3 resultados para Metal oxide semiconductors, Complementary--Design and construction
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The aim of Tissue Engineering is to develop biological substitutes that will restore lost morphological and functional features of diseased or damaged portions of organs. Recently computer-aided technology has received considerable attention in the area of tissue engineering and the advance of additive manufacture (AM) techniques has significantly improved control over the pore network architecture of tissue engineering scaffolds. To regenerate tissues more efficiently, an ideal scaffold should have appropriate porosity and pore structure. More sophisticated porous configurations with higher architectures of the pore network and scaffolding structures that mimic the intricate architecture and complexity of native organs and tissues are then required. This study adopts a macro-structural shape design approach to the production of open porous materials (Titanium foams), which utilizes spatial periodicity as a simple way to generate the models. From among various pore architectures which have been studied, this work simulated pore structure by triply-periodic minimal surfaces (TPMS) for the construction of tissue engineering scaffolds. TPMS are shown to be a versatile source of biomorphic scaffold design. A set of tissue scaffolds using the TPMS-based unit cell libraries was designed. TPMS-based Titanium foams were meant to be printed three dimensional with the relative predicted geometry, microstructure and consequently mechanical properties. Trough a finite element analysis (FEA) the mechanical properties of the designed scaffolds were determined in compression and analyzed in terms of their porosity and assemblies of unit cells. The purpose of this work was to investigate the mechanical performance of TPMS models trying to understand the best compromise between mechanical and geometrical requirements of the scaffolds. The intention was to predict the structural modulus in open porous materials via structural design of interconnected three-dimensional lattices, hence optimising geometrical properties. With the aid of FEA results, it is expected that the effective mechanical properties for the TPMS-based scaffold units can be used to design optimized scaffolds for tissue engineering applications. Regardless of the influence of fabrication method, it is desirable to calculate scaffold properties so that the effect of these properties on tissue regeneration may be better understood.
Resumo:
The gas-phase phenol methylation with methanol was investigated both from catalitic and spectroscopic point of view. In particular, the work focus on the behavior of metal oxide catalysts, like iron(III) vanadate and aluminum vanadate. Spectroscopic studies include: X-ray diffraction and Raman analysis for catalyst charactrerization; Diffuse reflectance infrared fourier transform spectroscopy and in-situ Infrared spectroscopy in vacuum for investigation of interactions between reactants and surface of catalysts.
Resumo:
In the last twenty years aerospace and automotive industries started working widely with composite materials, which are not easy to test using classic Non-Destructive Inspection (NDI) techniques. Pairwise, the development of safety regulations sets higher and higher standards for the qualification and certification of those materials. In this thesis a new concept of a Non-Destructive defect detection technique is proposed, based on Ultrawide-Band (UWB) Synthetic Aperture Radar (SAR) imaging. Similar SAR methods are yet applied either in minefield [22] and head stroke [14] detection. Moreover feasibility studies have already demonstrated the validity of defect detection by means of UWB radars [12, 13]. The system was designed using a cheap commercial off-the-shelf radar device by Novelda and several tests of the developed system have been performed both on metallic specimen (aluminum plate) and on composite coupon (carbon fiber). The obtained results confirm the feasibility of the method and highlight the good performance of the developed system considered the radar resolution. In particular, the system is capable of discerning healthy coupons from damaged ones, and correctly reconstruct the reflectivity image of the tested defects, namely a 8 x 8 mm square bulge and a 5 mm drilled holes on metal specimen and a 5 mm drilled hole on composite coupon.