3 resultados para Metal insulator transition
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In questo elaborato vengono studiate le proprietà optoelettroniche di film sottili di germanio nanoporosi ottenuti per impiantazione ionica. Viene trattata la tecnica sperimentale della Surface Photovoltage Spectroscopy nella configurazione Metal-Insulator-Semiconductor. Viene osservato che la presenza di struttura nanoporosa provoca due effetti: il primo è l’innalzamento del bandgap energetico dovuta al confinamento quantistico degli elettroni all’interno dei pori; il secondo è l’incremento del segnale SPV per quei film in cui è maggiore il rapporto tra superficie e volume.
Resumo:
High-valent terminal metal-oxygen adducts are supposed to be potent oxidising intermediates in enzymatic catalyses. In contrast to those from groups 6-8, oxidants that contain late transition metals (Co, Ni, Cu) are poorly understood. Because of their high reactivity, only a few examples of these compounds have been observed. The aim of this project was to investigate the reactivity of high-valent Ni(III) complexes, containing a monodentate oxygen-donor ligands, in hydrogen atom abstraction (HAA) and oxygen atom transfer (OAT) reactions which are typical of biological high-valent metal-oxygen species. Particularly, the Ni(III) complexes were generated in situ, at low temperature, from the oxidation of the Ni(II) species.The nickel complexes studied during this work were supported by tridentate ligands, with a strong σ-donating ability and exceedingly resistant to several common degradation pathways. These complexes vary based on the monodentate group in the fourth coordination position site, which can be neutral or anionic. In particular, we prepared four different Ni(III) complexes [NiIII(pyN2Me2)(OCO2H)] (12), [NiIII(pyN2Me2)(ONO2)] (14), [NiIII(pyN2Me2)(OC(O)CH3)] (18) and [NiIII(pyN2Me2)(OC(O)H)] (25). They feature a bicarbonate (-OCO2H), nitrate (-ONO2), acetate (-OC(O)CH3) and formate (-OC(O)H) group, respectively.HAA and OAT reactions were performed by adding 2,6-di-tert-butylphenol (2,6-DTBP) at -40°C, and triphenylphosphine (PPh3) at -80°C, to the in situ generated Ni(III) complexes, respectively. These reactions were carried out by adding 7 to 500 equivalents of substrate, in order to ensure pseudo-first order conditions. Since, the reactivity of the Ni(III) complex featured by the bicarbonate group has been studied in a previous work, we only investigated that of the species bearing the nitrate, acetate and formate ligand. Finally we compared the value of the reaction rate of all the four species in the HAA and OAT reactions.
Resumo:
The aim of this master’s research thesis was the employment of an enantiopure 1,3-aminoalcohol, the 1-(α-aminobenzyl)-2-naphthol, known as Betti base, for the synthesis of some novel compounds which show a C2 symmetry. Some of these compounds, after derivatization, were used as ligands in association with transition metals to prepare some catalysts for enantioselective catalytic reactions. Some aminoalcohol (Salan-type) derivatives of these compounds were obtained upon reduction and in some cases it was possible to obtain complexes with transition metals such as Mn, Ni, Co and Cu. Furthermore a novel 6-membered analogue bisoxazoline ligand, 2,6-bis((R)-1-Phenyl-1H-naphtho[1,2-e][1,3]oxazin-3-yl)pyridine, was obtained and from it two Cu-complexes were prepared. The metal complexes were employed in some reactions to test the asymmetric induction, which was in some cases up to discrete values.