6 resultados para Mediterranean Spanish urban system
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The Mediterranean Sea is a semi-enclosed sea, connected to the Atlantic Ocean through the Gibraltar Strait and subdivided in two different regions by the Sicily Strait. The geographical extension of the basin, the surface heat flux, and the water inflow from the Gibraltar Strait are some of the basic factors determining its horizontal and vertical circulation. In the Mediterranean strong salinity and temperature zonal gradients contribute to maintain the zonal-vertical circulation, while meridional-vertical cells are equally forced by winds and deep water mass formation in three regions, the Gulf of Lyon, the southern Adriatic and the Cretan Sea areas. The objective of this thesis is to study how these cells combine together to form the Mediterranean conveyor belt system. This has never been attempted before so the conclusions are necessarily preliminary. In the first part we discuss the vertical zonal and meridional circulation by reconstructing the Wust Mediterranean vertical salinity and temperature structures in an attempt to evaluate the water mass structure consistent with modern data. Our results confirm that Wust depicted vertical circulation from scarce data is reproduced by the past 27 years observations. The structure of both meridional and zonal circulations was discussed using velocity vertical streamfunctions with two different methods. The first one, eulerian, allowed us to observe vertical structures that were already reported in the literature. Recent studies in the Atlantic Ocean have shown that gyres and eddies have an important influence in the isopycnal vertical circulation. This is called the residual circulation which was computed in this study for the first time. A possible interpretation of horizontal connection between the meridional and zonal cells was discussed using horizontal streamfunction. In the last part of the thesis we have been developing an idealized numerical model to study the vertical circulation in the Mediterranean.
Resumo:
Urban systems consist of several interlinked sub-systems - social, economic, institutional and environmental – each representing a complex system of its own and affecting all the others at various structural and functional levels. An urban system is represented by a number of “human” agents, such as individuals and households, and “non-human” agents, such as buildings, establishments, transports, vehicles and infrastructures. These two categories of agents interact among them and simultaneously produce impact on the system they interact with. Try to understand the type of interactions, their spatial and temporal localisation to allow a very detailed simulation trough models, turn out to be a great effort and is the topic this research deals with. An analysis of urban system complexity is here presented and a state of the art review about the field of urban models is provided. Finally, six international models - MATSim, MobiSim, ANTONIN, TRANSIMS, UrbanSim, ILUTE - are illustrated and then compared.
Resumo:
In the present work, a detailed analysis of a Mediterranean TLC occurred in January 2014 has been conducted. The author is not aware of other studies regarding this particular event at the publication of this thesis. In order to outline the cyclone evolution, observational data, including weather-stations data, satellite data, radar data and photographic evidence, were collected at first. After having identified the cyclone path and its general features, the GLOBO, BOLAM and MOLOCH NWP models, developed at ISAC-CNR (Bologna), were used to simulate the phenomenon. Particular attention was paid on the Mediterranean phase as well as on the Atlantic phase, since the cyclone showed a well defined precursor up to 3 days before the minimum formation in the Alboran Sea. The Mediterranean phase has been studied using different combinations of GLOBO, BOLAM and MOLOCH models, so as to evaluate the best model chain to simulate this kind of phenomena. The BOLAM and MOLOCH models showed the best performance, by adjusting the path erroneously deviated in the National Centre for Environmental Prediction (NCEP) and ECMWF operational models. The analysis of the cyclone thermal phase shown the presence of a deep-warm core structure in many cases, thus confirming the tropical-like nature of the system. Furthermore, the results showed high sensitivity to initial conditions in the whole lifetime of the cyclone, while the Sea Surface Temperature (SST) modification leads only to small changes in the Adriatic phase. The Atlantic phase has been studied using GLOBO and BOLAM model and with the aid of the same methodology already developed. After tracing the precursor, in the form of a low-pressure system, from the American East Coast to Spain, the thermal phase analysis was conducted. The parameters obtained showed evidence of a deep-cold core asymmetric structure during the whole Atlantic phase, while the first contact with the Mediterranean Sea caused a sudden transition to a shallow-warm core structure. The examination of Potential Vorticity (PV) 3-dimensional structure revealed the presence of a PV streamer that individually formed over Greenland and eventually interacted with the low-pressure system over the Spanish coast, favouring the first phase of the cyclone baroclinic intensification. Finally, the development of an automated system that tracks and studies the thermal phase of Mediterranean cyclones has been encouraged. This could lead to the forecast of potential tropical transition, against with a minimum computational investment.
Resumo:
Oslo, capitale della Norvegia, sta sperimentando un’improvvisa crescita della popolazione e secondo le stime fornite da Statistics Norway si prevede un aumento di 200 000 abitanti entro il 2040. La crescita della popolazione comporterà un rilevante aumento di domanda di acqua e, insieme ad altri fattori quali l’età delle infrastrutture e i cambiamenti climatici, sarà responsabile di una notevole pressione sulle infrastrutture idriche presenti. In risposta alla necessità di tempestivi cambiamenti, il gestore del servizio idrico della città (Oslo VAV) ha deciso di finanziare progetti per migliorare la robustezza delle infrastrutture idriche. Il lavoro di tesi si inserisce all’interno del progetto E3WDM, istituito nel 2005 con lo scopo di definire una gestione più efficiente della risorsa idrica di Oslo. L’obiettivo generale della tesi è la creazione di un modello metabolico attraverso il software UWOT (Makropoulos et al., 2008) con lo scopo di rappresentare i consumi idrici di due tipiche tipologie abitative nella città di Oslo. L’innovazione di questo studio consiste nella definizione e nella modellazione della domanda idrica all’interno delle abitazioni ad un livello di dettaglio molto elevato. Il nuovo approccio fornito da UWOT consente la simulazione di differenti strategie di intervento e la successiva gestione ottimale della risorsa idrica in grado di minimizzare i consumi di acqua, di energia e i costi, compatibilmente con la domanda idrica richiesta. Il lavoro di tesi comprende: -La descrizione del software UWOT, in particolare lo scopo del modello, l’innovativo approccio adottato, la struttura e il procedimento per creare un modello del sistema idrico urbano. -La definizione dei dati richiesti per la simulazione dei consumi idrici all’interno delle abitazioni nella città di Oslo e i metodi utilizzati per raccoglierli -L’applicazione del modello UWOT per la definizione dei trend di consumi idrici e la successiva analisi dei risultati
Resumo:
The interest of the scientific community towards organic pollutants in freshwater streams is fairly recent. During the past 50 years, thousands of chemicals have been synthesized and released into the general environment. Nowadays their occurrence and effects on several organism, invertebrates, fish, birds, reptiles and also humans are well documented. Because of their action, some of these chemicals have been defined as Endocrine Disrupters Compounds (EDCs) and the public health implications of these EDCs have been the subject of scientific debate. Most interestingly, among those that were noticed to have some influence and effects on the endocrine system were the estrone, the 17β-estradiol, the 17α-estradiol, the estriol, the 17α-ethinylestradiol, the testosterone and the progesterone. This project focused its attention on the 17β-estradiol. Estradiol, or more precisely, 17β-estradiol (also commonly referred to as E2) is a human sex hormone. It belongs to the class of steroid hormones. In spite of the effort to remove these substances from the effluents, the actual wastewater treatment plants are not able to degrade or inactivate these organic compounds that are continually poured in the ecosystem. Through this work a new system for the wastewater treatment was tested, to assess the decrease of the estradiol in the water. It involved the action of Chlorella vulgaris, a fresh water green microalga belonging to the family of the Chlorellaceae. This microorganism was selected for its adaptability and for its photosynthetic efficiency. To detect the decrease of the target compound in the water a CALUX bioassay analysis was chosen. Three different experiments were carried on to pursue the aim of the project. By analysing their results several aspects emerged. It was assessed the presence of EDCs inside the water used to prepare the culture media. C. vulgaris, under controlled conditions, could be efficient for this purpose, although further researches are essential to deepen the knowledge of this complex phenomenon. Ultimately by assessing the toxicity of the effluent against C. vulgaris, it was clear that at determined concentrations, it could affect the normal growth rate of this microorganism.
Resumo:
Air-sea interactions are a key process in the forcing of the ocean circulation and the climate. Water Mass Formation is a phenomenon related to extreme air-sea exchanges and heavy heat losses by the water column, being capable to transfer water properties from the surface to great depth and constituting a fundamental component of the thermohaline circulation of the ocean. Wind-driven Coastal Upwelling, on the other hand, is capable to induce intense heat gain in the water column, making this phenomenon important for climate change; further, it can have a noticeable influence on many biological pelagic ecosystems mechanisms. To study some of the fundamental characteristics of Water Mass Formation and Coastal Upwelling phenomena in the Mediterranean Sea, physical reanalysis obtained from the Mediterranean Forecating System model have been used for the period ranging from 1987 to 2012. The first chapter of this dissertation gives the basic description of the Mediterranean Sea circulation, the MFS model implementation, and the air-sea interaction physics. In the second chapter, the problem of Water Mass Formation in the Mediterranean Sea is approached, also performing ad-hoc numerical simulations to study heat balance components. The third chapter considers the study of Mediterranean Coastal Upwelling in some particular areas (Sicily, Gulf of Lion, Aegean Sea) of the Mediterranean Basin, together with the introduction of a new Upwelling Index to characterize and predict upwelling features using only surface estimates of air-sea fluxes. Our conclusions are that latent heat flux is the driving air-sea heat balance component in the Water Mass Formation phenomenon, while sensible heat exchanges are fundamental in Coastal Upwelling process. It is shown that our upwelling index is capable to reproduce the vertical velocity patterns in Coastal Upwelling areas. Nondimensional Marshall numbers evaluations for the open-ocean convection process in the Gulf of Lion show that it is a fully turbulent, three-dimensional phenomenon.