2 resultados para Measurement-While-Drilling
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
This thesis work encloses activities carried out in the Laser Center of the Polytechnic University of Madrid and the laboratories of the University of Bologna in Forlì. This thesis focuses on the superficial mechanical treatment for metallic materials called Laser Shock Peening (LSP). This process is a surface enhancement treatment which induces a significant layer of beneficial compressive residual stresses underneath the surface of metal components in order to improve the detrimental effects of the crack growth behavior rate in it. The innovation aspect of this work is the LSP application to specimens with extremely low thickness. In particular, after a bibliographic study and comparison with the main treatments used for the same purposes, this work analyzes the physics of the operation of a laser, its interaction with the surface of the material and the generation of the surface residual stresses which are fundamentals to obtain the LSP benefits. In particular this thesis work regards the application of this treatment to some Al2024-T351 specimens with low thickness. Among the improvements that can be obtained performing this operation, the most important in the aeronautic field is the fatigue life improvement of the treated components. As demonstrated in this work, a well-done LSP treatment can slow down the progress of the defects in the material that could lead to sudden failure of the structure. A part of this thesis is the simulation of this phenomenon using the program AFGROW, with which have been analyzed different geometric configurations of the treatment, verifying which was better for large panels of typical aeronautical interest. The core of the LSP process are the residual stresses that are induced on the material by the interaction with the laser light, these can be simulated with the finite elements but it is essential to verify and measure them experimentally. In the thesis are introduced the main methods for the detection of those stresses, they can be mechanical or by diffraction. In particular, will be described the principles and the detailed realization method of the Hole Drilling measure and an introduction of the X-ray Diffraction; then will be presented the results I obtained with both techniques. In addition to these two measurement techniques will also be introduced Neutron Diffraction method. The last part refers to the experimental tests of the fatigue life of the specimens, with a detailed description of the apparatus and the procedure used from the initial specimen preparation to the fatigue test with the press. Then the obtained results are exposed and discussed.
Resumo:
The main objective of this project is to experimentally demonstrate geometrical nonlinear phenomena due to large displacements during resonant vibration of composite materials and to explain the problem associated with fatigue prediction at resonant conditions. Three different composite blades to be tested were designed and manufactured, being their difference in the composite layup (i.e. unidirectional, cross-ply, and angle-ply layups). Manual envelope bagging technique is explained as applied to the actual manufacturing of the components; problems encountered and their solutions are detailed. Forced response tests of the first flexural, first torsional, and second flexural modes were performed by means of a uniquely contactless excitation system which induced vibration by using a pulsed airflow. Vibration intensity was acquired by means of Polytec LDV system. The first flexural mode is found to be completely linear irrespective of the vibration amplitude. The first torsional mode exhibits a general nonlinear softening behaviour which is interestingly coupled with a hardening behaviour for the unidirectional layup. The second flexural mode has a hardening nonlinear behaviour for either the unidirectional and angle-ply blade, whereas it is slightly softening for the cross-ply layup. By using the same equipment as that used for forced response analyses, free decay tests were performed at different airflow intensities. Discrete Fourier Trasform over the entire decay and Sliding DFT were computed so as to visualise the presence of nonlinear superharmonics in the decay signal and when they were damped out from the vibration over the decay time. Linear modes exhibit an exponential decay, while nonlinearities are associated with a dry-friction damping phenomenon which tends to increase with increasing amplitude. Damping ratio is derived from logarithmic decrement for the exponential branch of the decay.