3 resultados para Measurement Error Estimation

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mentre si svolgono operazioni su dei qubit, possono avvenire vari errori, modificando così l’informazione da essi contenuta. La Quantum Error Correction costruisce algoritmi che permettono di tollerare questi errori e proteggere l’informazione che si sta elaborando. Questa tesi si focalizza sui codici a 3 qubit, che possono correggere un errore di tipo bit-flip o un errore di tipo phase-flip. Più precisamente, all’interno di questi algoritmi, l’attenzione è posta sulla procedura di encoding, che punta a proteggere meglio dagli errori l’informazione contenuta da un qubit, e la syndrome measurement, che specifica su quale qubit è avvenuto un errore senza alterare lo stato del sistema. Inoltre, sfruttando la procedura della syndrome measurement, è stata stimata la probabilità di errore di tipo bit-flip e phase-flip su un qubit attraverso l’utilizzo della IBM quantum experience.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last few years there has been a great development of techniques like quantum computers and quantum communication systems, due to their huge potentialities and the growing number of applications. However, physical qubits experience a lot of nonidealities, like measurement errors and decoherence, that generate failures in the quantum computation. This work shows how it is possible to exploit concepts from classical information in order to realize quantum error-correcting codes, adding some redundancy qubits. In particular, the threshold theorem states that it is possible to lower the percentage of failures in the decoding at will, if the physical error rate is below a given accuracy threshold. The focus will be on codes belonging to the family of the topological codes, like toric, planar and XZZX surface codes. Firstly, they will be compared from a theoretical point of view, in order to show their advantages and disadvantages. The algorithms behind the minimum perfect matching decoder, the most popular for such codes, will be presented. The last section will be dedicated to the analysis of the performances of these topological codes with different error channel models, showing interesting results. In particular, while the error correction capability of surface codes decreases in presence of biased errors, XZZX codes own some intrinsic symmetries that allow them to improve their performances if one kind of error occurs more frequently than the others.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The comfort level of the seat has a major effect on the usage of a vehicle; thus, car manufacturers have been working on elevating car seat comfort as much as possible. However, still, the testing and evaluation of comfort are done using exhaustive trial and error testing and evaluation of data. In this thesis, we resort to machine learning and Artificial Neural Networks (ANN) to develop a fully automated approach. Even though this approach has its advantages in minimizing time and using a large set of data, it takes away the degree of freedom of the engineer on making decisions. The focus of this study is on filling the gap in a two-step comfort level evaluation which used pressure mapping with body regions to evaluate the average pressure supported by specific body parts and the Self-Assessment Exam (SAE) questions on evaluation of the person’s interest. This study has created a machine learning algorithm that works on giving a degree of freedom to the engineer in making a decision when mapping pressure values with body regions using ANN. The mapping is done with 92% accuracy and with the help of a Graphical User Interface (GUI) that facilitates the process during the testing time of comfort level evaluation of the car seat, which decreases the duration of the test analysis from days to hours.