2 resultados para Mathematical Model of Domain Ontology
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In this thesis, we aim to discuss a simple mathematical model for the edge detection mechanism and the boundary completion problem in the human brain in a differential geometry framework. We describe the columnar structure of the primary visual cortex as the fiber bundle R2 × S1, the orientation bundle, and by introducing a first vector field on it, explain the edge detection process. Edges are detected through a lift from the domain in R2 into the manifold R2 × S1 and are horizontal to a completely non-integrable distribution. Therefore, we can construct a subriemannian structure on the manifold R2 × S1, through which we retrieve perceived smooth contours as subriemannian geodesics, solutions to Hamilton’s equations. To do so, in the first chapter, we illustrate the functioning of the most fundamental structures of the early visual system in the brain, from the retina to the primary visual cortex. We proceed with introducing the necessary concepts of differential and subriemannian geometry in chapters two and three. We finally implement our model in chapter four, where we conclude, comparing our results with the experimental findings of Heyes, Fields, and Hess on the existence of an association field.
Resumo:
This thesis aims to illustrate the construction of a mathematical model of a hydraulic system, oriented to the design of a model predictive control (MPC) algorithm. The modeling procedure starts with the basic formulation of a piston-servovalve system. The latter is a complex non linear system with some unknown and not measurable effects that constitute a challenging problem for the modeling procedure. The first level of approximation for system parameters is obtained basing on datasheet informations, provided workbench tests and other data from the company. Then, to validate and refine the model, open-loop simulations have been made for data matching with the characteristics obtained from real acquisitions. The final developed set of ODEs captures all the main peculiarities of the system despite some characteristics due to highly varying and unknown hydraulic effects, like the unmodeled resistive elements of the pipes. After an accurate analysis, since the model presents many internal complexities, a simplified version is presented. The latter is used to linearize and discretize correctly the non linear model. Basing on that, a MPC algorithm for reference tracking with linear constraints is implemented. The results obtained show the potential of MPC in this kind of industrial applications, thus a high quality tracking performances while satisfying state and input constraints. The increased robustness and flexibility are evident with respect to the standard control techniques, such as PID controllers, adopted for these systems. The simulations for model validation and the controlled system have been carried out in a Python code environment.