5 resultados para Massive spin-2
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In questa tesi si è studiato uno dei principali processi nelle stelle responsabili della nucleosintesi degli elementi pesanti dopo il 56Fe, il processo-s. In particolare sono state illustrate le sorgenti di neutroni che alimentano questo processo e si è analizzata la reazione 22Ne (α,n) 25Mg. Per costruire un valido modello matematico di questo processo è necessario conoscere in maniera accurata il reaction rate di questa reazione. Conseguentemente è necessario conoscere la sezione d'urto di tale reazione in maniera molto accurata. Sono stati condotti diversi esperimenti nel tentativo di valutare la sezione d'urto per via diretta, facendo collidere un fascio di particelle α su un campione di 22Ne. Queste rilevazioni hanno dato esiti non soddisfacenti nell'intervallo di energie riguardanti il processo-s, in quanto, a causa di disturbi dovuti al fondo di raggi cosmici e alla barriera Coulombiana, non è stato possibile osservare risonanze per valori di energie delle particelle α minori di (832± 2) keV. Per colmare la mancanza di dati sperimentali si è deciso di studiare gli stati eccitati del nucleo composto 26Mg tramite la reazione inversa 25Mg+n alle facility n_TOF, situata al CERN, e GELINA al IRMM. Le misure effettuate hanno mostrato diverse risonanze al di sotto di (832±2) keV, compatibili con le spin-parità di 22Ne e α. In seguito è stato stimato il loro contributo al reaction rate e i risultati hanno mostrato che per temperature tipiche di stelle massive il contributo di queste risonanze è trascurabile ma risulta di grande rilevanza alle temperature tipiche delle stelle appartenenti al ramo asintotico delle giganti (AGB).
Resumo:
Alcune osservazioni sperimentali portano ad affermare che la maggior parte della massa dell'universo è costituita da un tipo di materia definita oscura, cioè materia che interagisce solo gravitazionalmente e debolmente. I candidati più promettenti sono tipicamente identificati con le WIMP (Weakly Interacting Massive Particle). L'esperimento XENON1T per la rivelazione di materia oscura, in fase di costruzione nei Laboratori Nazionali del Gran Sasso, sfrutta uno spessore di 1.4 km di roccia schermante. Il rivelatore è una Time Projection Chamber contenente circa 2 tonnellate di xeno e avrà sensibilità per sezioni d’urto WIMP-nucleo spin-indipendent pari a circa 2x10-47 cm2 (per WIMP di massa 50 GeV/c2), due ordini di grandezza al di sotto degli attuali limiti. Per raggiungere tale sensibilità la TPC sarà inserita in una tank cilindrica riempita di acqua ultrapura, che fungerà sia da schermo passivo contro la radiazione esterna (gamma e neutroni di bassa energia), sia da veto per i muoni cosmici. I muoni possono infatti produrre neutroni di energia tale da raggiungere la TPC e simulare segnali tipici delle WIMP. Essi sono identificati per via della radiazione Cherenkov, emessa in seguito al loro passaggio in acqua, rivelata per mezzo di 84 fotomoltiplicatori (PMT) 8'' Hamamatsu R5912ASSY HQE. Lo studio delle prestazioni e delle caratteristiche dei PMT utilizzati nel sistema di veto di muoni sono lo scopo di questo lavoro di tesi. In particolare è stato preparato un opportuno setup per i test dei fotomoltiplicatori e sono state effettuate misure di guadagno, dark rate ed afterpulse. In una prima fase sono stati testati in aria 50 PMT presso la Sezione INFN di Bologna, nel periodo compreso tra Novembre 2012 e Marzo 2013 ed in una seconda fase sono stati testati in acqua 90 PMT presso i Laboratori Nazionali del Gran Sasso, nel periodo compreso tra Aprile e Settembre 2013.
Resumo:
I modelli su reticolo con simmetrie SU(n) sono attualmente oggetto di studio sia dal punto di vista sperimentale, sia dal punto di vista teorico; particolare impulso alla ricerca in questo campo è stato dato dai recenti sviluppi in campo sperimentale per quanto riguarda la tecnica dell’intrappolamento di atomi ultrafreddi in un reticolo ottico. In questa tesi viene studiata, sia con tecniche analitiche sia con simulazioni numeriche, la generalizzazione del modello di Heisenberg su reticolo monodimensionale a simmetria SU(3). In particolare, viene proposto un mapping tra il modello di Heisenberg SU(3) e l’Hamiltoniana con simmetria SU(2) bilineare-biquadratica con spin 1. Vengono inoltre presentati nuovi risultati numerici ottenuti con l’algoritmo DMRG che confermano le previsioni teoriche in letteratura sul modello in esame. Infine è proposto un approccio per la formulazione della funzione di partizione dell’Hamiltoniana bilineare-biquadratica a spin-1 servendosi degli stati coerenti per SU(3).
Resumo:
Uno dei più importanti campi di ricerca che coinvolge gli astrofisici è la comprensione della Struttura a Grande Scala dell'universo. I principi della Formazione delle Strutture sono ormai ben saldi, e costituiscono la base del cosiddetto "Modello Cosmologico Standard". Fino agli inizi degli anni 2000, la teoria che spiegava con successo le proprietà statistiche dell'universo era la cosiddetta "Teoria Perturbativa Standard". Attraverso simulazioni numeriche e osservazioni di qualità migliore, si è evidenziato il limite di quest'ultima teoria nel descrivere il comportamento dello spettro di potenza su scale oltre il regime lineare. Ciò spinse i teorici a trovare un nuovo approccio perturbativo, in grado di estendere la validità dei risultati analitici. In questa Tesi si discutono le teorie "Renormalized Perturbation Theory"e"Multipoint Propagator". Queste nuove teorie perturbative sono la base teorica del codice BisTeCca, un codice numerico originale che permette il calcolo dello spettro di potenza a 2 loop e del bispettro a 1 loop in ordine perturbativo. Come esempio applicativo, abbiamo utilizzato BisTeCca per l'analisi dei bispettri in modelli di universo oltre la cosmologia standard LambdaCDM, introducendo una componente di neutrini massicci. Si mostrano infine gli effetti su spettro di potenza e bispettro, ottenuti col nostro codice BisTeCca, e si confrontano modelli di universo con diverse masse di neutrini.
Resumo:
In questo elaborato vengono discusse le catene di spin-1, modelli quantistici definiti su un reticolo unidimensionale con interazione tra siti primi vicini. Fra la ricca varietà di tipologie esistenti è stato scelto di porre attenzione primariamente sul modello antiferromagnetico con interazione puramente biquadratica. Vengono presentati diversi metodi di classificazione degli autostati di tale modello, a partire dalle simmetrie che ne caratterizzano l’Hamiltoniana. La corrispondenza con altri modelli noti, quali il modello XXZ di spin 1/2, la catena di Heisenberg SU (3) ed i modelli di Potts, è utile ad individuare strutture simmetriche nascoste nel formalismo di spin-1, le quali consentono di ricavare informazioni sullo spettro energetico. Infine, vengono presentati risultati numerici accompagnati da alcune considerazioni sulle modifiche dello spettro quando si aggiunge un termine bilineare alla Hamiltoniana biquadratica.