10 resultados para Markov chains hidden Markov models Viterbi algorithm Forward-Backward algorithm maximum likelihood

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce the notation of Markov chains and their properties, and give the definition of ergodic, irreducible and aperiodic chains with correspective examples. Then, the definition of hidden Markov models is given and their characteristics are examined. We formulate three basic problems regarding the hidden Markov models and discuss the solution of two of them - the Viterbi algorithm and the forward-backward algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questa tesi viene presentato un modello stocastico forward-backward per la valutazione dei certificati verdi nel mercato EU ETS (European Union Emissions Trading Scheme). Anzitutto si spiega l’origine di tale mercato, per poi descriverne il funzionamento e lo scopo. Vengono, quindi, introdotte le equazioni differenziali stocastiche backward lineari, per le quali si mostra un risultato di esistenza e unicità della soluzione. Conseguentemente vengono inquadrati matematicamente i sistemi differenziali stocastici forward-backward, mostrando una loro applicazione nell’ambito del option pricing. Viene quindi derivato il modello forward-backward per la valutazione delle quote di emissione. Il prezzo dei certificati verdi è trovato come soluzione di un’equazione differenziale alle derivate parziali semilineare. L'ultima parte è dedicata all’analisi numerica di tale PDE. Infine viene trattata la valutazione di opzioni europee scritte sulle quote di emissione.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il riconoscimento delle gesture è un tema di ricerca che sta acquisendo sempre più popolarità, specialmente negli ultimi anni, grazie ai progressi tecnologici dei dispositivi embedded e dei sensori. Lo scopo di questa tesi è quello di utilizzare alcune tecniche di machine learning per realizzare un sistema in grado di riconoscere e classificare in tempo reale i gesti delle mani, a partire dai segnali mioelettrici (EMG) prodotti dai muscoli. Inoltre, per consentire il riconoscimento di movimenti spaziali complessi, verranno elaborati anche segnali di tipo inerziale, provenienti da una Inertial Measurement Unit (IMU) provvista di accelerometro, giroscopio e magnetometro. La prima parte della tesi, oltre ad offrire una panoramica sui dispositivi wearable e sui sensori, si occuperà di analizzare alcune tecniche per la classificazione di sequenze temporali, evidenziandone vantaggi e svantaggi. In particolare, verranno considerati approcci basati su Dynamic Time Warping (DTW), Hidden Markov Models (HMM), e reti neurali ricorrenti (RNN) di tipo Long Short-Term Memory (LSTM), che rappresentano una delle ultime evoluzioni nel campo del deep learning. La seconda parte, invece, riguarderà il progetto vero e proprio. Verrà impiegato il dispositivo wearable Myo di Thalmic Labs come caso di studio, e saranno applicate nel dettaglio le tecniche basate su DTW e HMM per progettare e realizzare un framework in grado di eseguire il riconoscimento real-time di gesture. Il capitolo finale mostrerà i risultati ottenuti (fornendo anche un confronto tra le tecniche analizzate), sia per la classificazione di gesture isolate che per il riconoscimento in tempo reale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questa tesi si inserisce nell'ambito delle analisi statistiche e dei metodi stocastici applicati all'analisi delle sequenze di DNA. Nello specifico il nostro lavoro è incentrato sullo studio del dinucleotide CG (CpG) all'interno del genoma umano, che si trova raggruppato in zone specifiche denominate CpG islands. Queste sono legate alla metilazione del DNA, un processo che riveste un ruolo fondamentale nella regolazione genica. La prima parte dello studio è dedicata a una caratterizzazione globale del contenuto e della distribuzione dei 16 diversi dinucleotidi all'interno del genoma umano: in particolare viene studiata la distribuzione delle distanze tra occorrenze successive dello stesso dinucleotide lungo la sequenza. I risultati vengono confrontati con diversi modelli nulli: sequenze random generate con catene di Markov di ordine zero (basate sulle frequenze relative dei nucleotidi) e uno (basate sulle probabilità di transizione tra diversi nucleotidi) e la distribuzione geometrica per le distanze. Da questa analisi le proprietà caratteristiche del dinucleotide CpG emergono chiaramente, sia dal confronto con gli altri dinucleotidi che con i modelli random. A seguito di questa prima parte abbiamo scelto di concentrare le successive analisi in zone di interesse biologico, studiando l’abbondanza e la distribuzione di CpG al loro interno (CpG islands, promotori e Lamina Associated Domains). Nei primi due casi si osserva un forte arricchimento nel contenuto di CpG, e la distribuzione delle distanze è spostata verso valori inferiori, indicando che questo dinucleotide è clusterizzato. All’interno delle LADs si trovano mediamente meno CpG e questi presentano distanze maggiori. Infine abbiamo adottato una rappresentazione a random walk del DNA, costruita in base al posizionamento dei dinucleotidi: il walk ottenuto presenta caratteristiche drasticamente diverse all’interno e all’esterno di zone annotate come CpG island. Riteniamo pertanto che metodi basati su questo approccio potrebbero essere sfruttati per migliorare l’individuazione di queste aree di interesse nel genoma umano e di altri organismi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questa tesi viene esposto il modello EU ETS (European Union Emission Trading Scheme) per la riduzione delle emissoni di gas serra, il quale viene formalizzato matematicamente da un sistema di FBSDE (Forward Backward Stochastic Differential Equation). Da questo sistema si ricava un'equazione differenziale non lineare con condizione al tempo finale non continua che viene studiata attraverso la teoria delle soluzioni viscosità. Inoltre il modello viene implementato numericamente per ottenere alcune simulazioni dei processi coinvolti.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questo elaborato si pone come obiettivo l’introduzione e lo studio di due strumenti estremamente interessanti in Analisi Stocastica per le loro applicazioni nell’ambito del controllo ottimo stocastico e, soprattutto (per i fini di questo lavoro), della finanza matematica: le equazioni differenziali stocastiche backward (BSDEs) e le equazioni differenziali stocastiche forward-backward (FBSDEs). Innanzitutto, la trattazione verterà sull’analisi delle BSDEs. Partendo dal caso lineare, perfettamente esplicativo dei problemi di adattabilità che si riscontrano nella definizione di soluzione, si passerà allo studio delle BSDEs non lineari con coefficienti Lipschitziani, giungendo, in entrambe le situazioni, alla prova di risultati di esistenza e unicità della soluzione. Tale analisi sarà completata con un’indagine sulle relazioni che persistono con le PDEs, che porterà all’introduzione di una generalizzazione della formula di Feynman-Kac e si concluderà, dopo aver introdotto le FBSDEs, con la definizione di un metodo risolutivo per queste ultime, noto come Schema a quattro fasi. Tali strumenti troveranno applicazione nel quinto e ultimo capitolo come modelli teorici alla base della Formula di Black-Scholes per problemi di prezzatura e copertura di opzioni.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The established isotropic tomographic models show the features of subduction zones in terms of seismic velocity anomalies, but they are generally subjected to the generation of artifacts due to the lack of anisotropy in forward modelling. There is evidence for the significant influence of seismic anisotropy in the mid-upper mantle, especially for boundary layers like subducting slabs. As consequence, in isotropic models artifacts may be misinterpreted as compositional or thermal heterogeneities. In this thesis project the application of a trans-dimensional Metropolis-Hastings method is investigated in the context of anisotropic seismic tomography. This choice arises as a response to the important limitations introduced by traditional inversion methods which use iterative procedures of optimization of a function object of the inversion. On the basis of a first implementation of the Bayesian sampling algorithm, the code is tested with some cartesian two-dimensional models, and then extended to polar coordinates and dimensions typical of subduction zones, the main focus proposed for this method. Synthetic experiments with increasing complexity are realized to test the performance of the method and the precautions for multiple contexts, taking into account also the possibility to apply seismic ray-tracing iteratively. The code developed is tested mainly for 2D inversions, future extensions will allow the anisotropic inversion of seismological data to provide more realistic imaging of real subduction zones, less subjected to generation of artifacts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nowadays communication is switching from a centralized scenario, where communication media like newspapers, radio, TV programs produce information and people are just consumers, to a completely different decentralized scenario, where everyone is potentially an information producer through the use of social networks, blogs, forums that allow a real-time worldwide information exchange. These new instruments, as a result of their widespread diffusion, have started playing an important socio-economic role. They are the most used communication media and, as a consequence, they constitute the main source of information enterprises, political parties and other organizations can rely on. Analyzing data stored in servers all over the world is feasible by means of Text Mining techniques like Sentiment Analysis, which aims to extract opinions from huge amount of unstructured texts. This could lead to determine, for instance, the user satisfaction degree about products, services, politicians and so on. In this context, this dissertation presents new Document Sentiment Classification methods based on the mathematical theory of Markov Chains. All these approaches bank on a Markov Chain based model, which is language independent and whose killing features are simplicity and generality, which make it interesting with respect to previous sophisticated techniques. Every discussed technique has been tested in both Single-Domain and Cross-Domain Sentiment Classification areas, comparing performance with those of other two previous works. The performed analysis shows that some of the examined algorithms produce results comparable with the best methods in literature, with reference to both single-domain and cross-domain tasks, in $2$-classes (i.e. positive and negative) Document Sentiment Classification. However, there is still room for improvement, because this work also shows the way to walk in order to enhance performance, that is, a good novel feature selection process would be enough to outperform the state of the art. Furthermore, since some of the proposed approaches show promising results in $2$-classes Single-Domain Sentiment Classification, another future work will regard validating these results also in tasks with more than $2$ classes.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In the recent decade, the request for structural health monitoring expertise increased exponentially in the United States. The aging issues that most of the transportation structures are experiencing can put in serious jeopardy the economic system of a region as well as of a country. At the same time, the monitoring of structures is a central topic of discussion in Europe, where the preservation of historical buildings has been addressed over the last four centuries. More recently, various concerns arose about security performance of civil structures after tragic events such the 9/11 or the 2011 Japan earthquake: engineers looks for a design able to resist exceptional loadings due to earthquakes, hurricanes and terrorist attacks. After events of such a kind, the assessment of the remaining life of the structure is at least as important as the initial performance design. Consequently, it appears very clear that the introduction of reliable and accessible damage assessment techniques is crucial for the localization of issues and for a correct and immediate rehabilitation. The System Identification is a branch of the more general Control Theory. In Civil Engineering, this field addresses the techniques needed to find mechanical characteristics as the stiffness or the mass starting from the signals captured by sensors. The objective of the Dynamic Structural Identification (DSI) is to define, starting from experimental measurements, the modal fundamental parameters of a generic structure in order to characterize, via a mathematical model, the dynamic behavior. The knowledge of these parameters is helpful in the Model Updating procedure, that permits to define corrected theoretical models through experimental validation. The main aim of this technique is to minimize the differences between the theoretical model results and in situ measurements of dynamic data. Therefore, the new model becomes a very effective control practice when it comes to rehabilitation of structures or damage assessment. The instrumentation of a whole structure is an unfeasible procedure sometimes because of the high cost involved or, sometimes, because it’s not possible to physically reach each point of the structure. Therefore, numerous scholars have been trying to address this problem. In general two are the main involved methods. Since the limited number of sensors, in a first case, it’s possible to gather time histories only for some locations, then to move the instruments to another location and replay the procedure. Otherwise, if the number of sensors is enough and the structure does not present a complicate geometry, it’s usually sufficient to detect only the principal first modes. This two problems are well presented in the works of Balsamo [1] for the application to a simple system and Jun [2] for the analysis of system with a limited number of sensors. Once the system identification has been carried, it is possible to access the actual system characteristics. A frequent practice is to create an updated FEM model and assess whether the structure fulfills or not the requested functions. Once again the objective of this work is to present a general methodology to analyze big structure using a limited number of instrumentation and at the same time, obtaining the most information about an identified structure without recalling methodologies of difficult interpretation. A general framework of the state space identification procedure via OKID/ERA algorithm is developed and implemented in Matlab. Then, some simple examples are proposed to highlight the principal characteristics and advantage of this methodology. A new algebraic manipulation for a prolific use of substructuring results is developed and implemented.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In questo elaborato ci siamo occupati della legge di Zipf sia da un punto di vista applicativo che teorico. Tale legge empirica afferma che il rango in frequenza (RF) delle parole di un testo seguono una legge a potenza con esponente -1. Per quanto riguarda l'approccio teorico abbiamo trattato due classi di modelli in grado di ricreare leggi a potenza nella loro distribuzione di probabilità. In particolare, abbiamo considerato delle generalizzazioni delle urne di Polya e i processi SSR (Sample Space Reducing). Di questi ultimi abbiamo dato una formalizzazione in termini di catene di Markov. Infine abbiamo proposto un modello di dinamica delle popolazioni capace di unificare e riprodurre i risultati dei tre SSR presenti in letteratura. Successivamente siamo passati all'analisi quantitativa dell'andamento del RF sulle parole di un corpus di testi. Infatti in questo caso si osserva che la RF non segue una pura legge a potenza ma ha un duplice andamento che può essere rappresentato da una legge a potenza che cambia esponente. Abbiamo cercato di capire se fosse possibile legare l'analisi dell'andamento del RF con le proprietà topologiche di un grafo. In particolare, a partire da un corpus di testi abbiamo costruito una rete di adiacenza dove ogni parola era collegata tramite un link alla parola successiva. Svolgendo un'analisi topologica della struttura del grafo abbiamo trovato alcuni risultati che sembrano confermare l'ipotesi che la sua struttura sia legata al cambiamento di pendenza della RF. Questo risultato può portare ad alcuni sviluppi nell'ambito dello studio del linguaggio e della mente umana. Inoltre, siccome la struttura del grafo presenterebbe alcune componenti che raggruppano parole in base al loro significato, un approfondimento di questo studio potrebbe condurre ad alcuni sviluppi nell'ambito della comprensione automatica del testo (text mining).