1 resultado para Mark 1:29-39
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Development of a biorefinery scheme for the valorization of olive mill wastewaters and grape pomaces
Resumo:
In the Mediterranean area, olive mill wastewater (OMW) and grape pomace (GP) are among the major agro-industrial wastes produced. These two wastes have a high organic load and high phytotoxicity. Thus, their disposal in the environment can lead to negative effects. Second-generation biorefineries are dedicated to the valorization of biowaste by the production of goods from such residual biomasses. This approach can combine bioremediation approaches to the generation of noble molecules, biomaterials and energy. The main aim of this thesis work was to study the anaerobic digestion of OMW and GP under different operational conditions to produce volatile fatti acids (VFAs) (first stage aim) and CH4 (second stage aim). To this end, a packed-bed biofilm reactor (PBBR) was set up to perform the anaerobic acidogenic digestion of the liquid dephenolized stream of OMW (OMWdeph). In parallel, the solid stream of OMW (OMWsolid), previously separated in order to allow the solid phase extraction of polyphenols, was addressed to anaerobic methanogenic digestion to obtain CH4. The latter experiment was performed in 100ml Pyrex bottles which were maintained at different temperatures (55-45-37°C). Together with previous experiments, the anaerobic acidogenic digestion of fermented GP (GPfreshacid) and dephenolized and fermented GP (GPdephacid) was performed in 100ml Pyrex bottles to estimate the concentration of VFAs achievable from each aforementioned GPs. Finally, the same matrices of GP and not pre-treated GP (GPfresh) were digested under anaerobic methanogenic condition to produce CH4. Anaerobic acidogenic and methanogenic digestion processes of GPs lasted about 33 days. Instead, the anaerobic acidogenic and methanogenic digestion process of OMWs lasted about 121 and 60 days, respectively. Each experiment was periodically monitored by analysing volume and composition of produced biogas and VFA concentration. Results showed that VFAs were produced in higher concentrations in GP compared to OMWdeph. The overall concentration of VFAs from GPfreshacid was approximately 39.5 gCOD L-1, 29 gCOD L-1 from GPdephacid, and 8.7 gCOD L-1 from OMWdeph. Concerning the CH4 production, the OMWsolid reached a high biochemical methane potential (BMP) at a thermophilic temperature (55°) than at mesophlic ones (37-45°C). The value reached was about 358.7 mlCH4 gSVsub-1. In contrast, GPfresh got a high BMP but at a mesophilic temperature. The BMP was about 207.3 mlCH4 gSVsub-1, followed by GPfreshacid with about 192.6 mlCH4 gSVsub-1 and lastly GPdephacid with about 102.2 mlCH4 gSVsub-1. In summary, based on the gathered results, GP seems to be a better carbon source for acidogenic and methanogenic microrganism compared to OMW, because higher amount of VFAs and CH4 were produced in AD of GP than OMW. In addition to these products, polyphenols were extracted by means of a solid phase extraction (SPE) procedure by another research group, and VFAs were utilised for biopolymers production, in particular polyhydroxyalkanoates (PHAs), by the same research group in which I was involved.