1 resultado para Manners
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Filtro por publicador
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (2)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- Biblioteca Valenciana Digital - Ministerio de Educación, Cultura y Deporte - Valencia - Espanha (1)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- Biodiversity Heritage Library, United States (5)
- Bioline International (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (2)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CentAUR: Central Archive University of Reading - UK (13)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (3)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Digital Archives@Colby (1)
- Digital Commons at Florida International University (1)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (6)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (17)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Glasgow Theses Service (1)
- Harvard University (6)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Instituto Politécnico do Porto, Portugal (5)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Memoria Académica - FaHCE, UNLP - Argentina (7)
- Ministerio de Cultura, Spain (3)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- QSpace: Queen's University - Canada (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório da Produção Científica e Intelectual da Unicamp (6)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (6)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (2)
- Repositorio Institucional de la Universidad de La Laguna (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (79)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- Scielo España (1)
- Scielo Saúde Pública - SP (7)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (7)
- Universidad Politécnica de Madrid (7)
- Universidade Federal do Pará (10)
- Universidade Federal do Rio Grande do Norte (UFRN) (18)
- Universidade Metodista de São Paulo (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (18)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (1)
- University of Michigan (382)
- University of Queensland eSpace - Australia (43)
Resumo:
Even without formal guarantees of their effectiveness, adversarial attacks against Machine Learning models frequently fool new defenses. We identify six key asymmetries that contribute to this phenomenon and formulate four guidelines to build future-proof defenses by preventing such asymmetries. We also prove that attacking a classifier is NP-complete, while defending from such attacks is Sigma_2^P-complete. We then introduce Counter-Attack (CA), an asymmetry-free metadefense that determines whether a model is robust on a given input by estimating its distance from the decision boundary. Under specific assumptions CA can provide theoretical detection guarantees. Additionally, we prove that while CA is NP-complete, fooling CA is Sigma_2^P-complete. Even when using heuristic relaxations, we show that our method can reliably identify non-robust points. As part of our experimental evaluation, we introduce UG100, a new dataset obtained by applying a provably optimal attack to six limited-scale networks (three for MNIST and three for CIFAR10), each trained in three different manners.