2 resultados para Management assessment tool
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The growing need to assess the environmental status of the Mediterranean coastal marine habitats and the large availability of data collected by Reef Check Italia onlus (RCI) volunteers suggest the possibility to develop innovative and reliable indices that may support decision makers in applying conservation strategies. The aims of this study were to check the reliability of data collected by RCI volunteers, analyse the spatial and temporal distribution of RCI available data, resume the knowledge on the biology and ecology of the monitored species, and develop innovative indices to asses the ecological quality of Mediterranean subtidal rocky shores and coralligenous habitats. Subtidal rocky shores and coralligenous were chosen because these are the habitats more attractive for divers; therefore mlst data are referring to them, moreover subtidal rocky bottom are strongly affected by coastal urbanisation, land use, fishing and tourist activities, that increase pollution, turbidity and sedimentation. Non-indigenous species (NIS) have been recognized as a major threat to the integrity of Mediterranean native communities because of their proliferation, spread and impact on resident communities. Monitoring of NIS’ spreading dynamics at the basin spatial scale is difficult but urgent. According to a field test, the training provided by RCI appears adequate to obtain reliable data by volunteers. Based on data collected by RCI volunteers, three main categories of indices were developed: indices based on species diversity, indices on the occurrence non-indigenous species, and indices on species sensitive toward physical, chemical and biological disturbances. As case studies, indices were applied to stretches of coastline defined according to management criteria (province territories and marine protected areas). The assessments of ecological quality in the Tavolara Marine Protected Area using the species sensitivities index were consisten with those previously obtained with traditional methods.
Resumo:
This work assesses the environmental impact of a municipal solid waste incinerator with energy recovery in Forlì-Cesena province (Emilia-Romagna region, Italy). The methodology used is Life Cycle Assessment (LCA). As the plant already applies the best technologies available in waste treatment, this study focuses on the fate of the residues (bottom and fly ash) produced during combustion. Nine scenarios are made, based on different ash treatment disposing/recycling techniques. The functional unit is the amount of waste incinerated in 2011. Boundaries are set from waste arrival in the plant to the disposal/recovery of the residues produced, with energy recovery. Only the operative period is considered. Software used is GaBi 4 and the LCIA method used is CML2001. The impact categories analyzed are: abiotic depletion, acidification, eutrophication, freshwater aquatic ecotoxicity, global warming, human toxicity, ozone layer depletion, photochemical oxidant formation, terrestrial ecotoxicity and primary energy demand. Most of the data are taken from Herambiente. When primary data are not available, data from Ecoinvent and GaBi databases or literature data are used. The whole incineration process is sustainable, due to the relevant avoided impact given by co-generator. As far as regards bottom ash treatment, the most influential process is the impact savings from iron recovery. Bottom ash recycling in road construction or as building material are both valid alternatives, even if the first option faces legislative limits in Italy. Regarding fly ash inertization, the adding of cement and Ferrox treatment results the most feasible alternatives. However, this inertized fly ash can maintain its hazardous nature. The only method to ensure the stability of an inertized fly ash is to couple two different stabilization treatments. Ash stabilization technologies shall improve with the same rate of the flexibility of the national legislation about incineration residues recycling.