4 resultados para Malmesbury, James Howard Harris, 3d earl of, 1807-1889.
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Currently making digital 3D models and replicas of the cultural heritage assets play an important role in the preservation and having a high detail source for future research and intervention. In this dissertation, it is tried to assess different methods for digital surveying and making 3D replicas of cultural heritage assets in different scales of size. The methodologies vary in devices, software, workflow, and the amount of skill that is required. The three phases of the 3D modelling process are data acquisition, modelling, and model presentation. Each of these sections is divided into sub-sections and there are several approaches, methods, devices, and software that may be employed, furthermore, the selection process should be based on the operation's goal, available facilities, the scale and properties of the object or structure to be modeled, as well as the operators' expertise and experience. The most key point to remember is that the 3D modelling operation should be properly accurate, precise, and reliable; therefore, there are so many instructions and pieces of advice on how to perform 3D modelling effectively. It is an attempt to compare and evaluate the various ways of each phase in order to explain and demonstrate their differences, benefits, and drawbacks in order to serve as a simple guide for new and/or inexperienced users.
Resumo:
Modern society is now facing significant difficulties in attempting to preserve its architectural heritage. Numerous challenges arise consequently when it comes to documentation, preservation and restoration. Fortunately, new perspectives on architectural heritage are emerging owing to the rapid development of digitalization. Therefore, this presents new challenges for architects, restorers and specialists. Additionally, this has changed the way they approach the study of existing heritage, changing from conventional 2D drawings in response to the increasing requirement for 3D representations. Recently, Building Information Modelling for historic buildings (HBIM) has escalated as an emerging trend to interconnect geometrical and informational data. Currently, the latest 3D geomatics techniques based on 3D laser scanners with enhanced photogrammetry along with the continuous improvement in the BIM industry allow for an enhanced 3D digital reconstruction of historical and existing buildings. This research study aimed to develop an integrated workflow for the 3D digital reconstruction of heritage buildings starting from a point cloud. The Pieve of San Michele in Acerboli’s Church in Santarcangelo Di Romagna (6th century) served as the test bed. The point cloud was utilized as an essential referential to model the BIM geometry using Autodesk Revit® 2022. To validate the accuracy of the model, Deviation Analysis Method was employed using CloudCompare software to determine the degree of deviation between the HBIM model and the point cloud. The acquired findings showed a very promising outcome in the average distance between the HBIM model and the point cloud. The conducted approach in this study demonstrated the viability of producing a precise BIM geometry from point clouds.
Resumo:
The present study concerns the acoustical characterisation of Italian historical theatres. It moved from the ISO 3382 which provides the guidelines for the measurement of a well established set of room acoustic parameters inside performance spaces. Nevertheless, the peculiarity of Italian historical theatres needs a more specific approach. The Charter of Ferrara goes in this direction, aiming at qualifying the sound field in this kind of halls and the present work pursues the way forward. Trying to understand how the acoustical qualification should be done, the Bonci Theatre in Cesena has been taken as a case study. In September 2012 acoustical measurements were carried out in the theatre, recording monaural e binaural impulse responses at each seat in the hall. The values of the time criteria, energy criteria and psycho-acoustical and spatial criteria have been extracted according to ISO 3382. Statistics were performed and a 3D model of the theatre was realised and tuned. Statistical investigations were carried out on the whole set of measurement positions and on carefully chosen reduced subsets; it turned out that these subsets are representative only of the “average” acoustics of the hall. Normality tests were carried out to verify whether EDT, T30 and C80 could be described with some degree of reliability with a theoretical distribution. Different results, according to the varying assumptions underlying each test, were found. Finally, an attempt was made to correlate the numerical results emerged from the statistical analysis to the perceptual sphere. Looking for “acoustical equivalent areas”, relative difference limens were considered as threshold values. No rule of thumb emerged. Finally, the significance of the usual representation through mean values and standard deviation, which may be meaningful for normal distributed data, was investigated.
Resumo:
The goal of this thesis was the study of the cement-bone interface in the tibial component of a cemented total knee prosthesis. One of the things you can see in specimens after in vivo service is that resorption of bone occurs in the interdigitated region between bone and cement. A stress shielding effect was investigated as a cause to explain bone resorption. Stress shielding occurs when bone is loaded less than physiological and therefore it starts remodeling according to the new loading conditions. µCT images were used to obtain 3D models of the bone and cement structure and a Finite Element Analysis was used to simulate different kind of loads. Resorption was also simulated by performing erosion operations in the interdigitated bone region. Finally, 4 models were simulated: bone (trabecular), bone with cement, and two models of bone with cement after progressive erosions of the bone. Compression, tension and shear test were simulated for each model in displacement-control until 2% of strain. The results show how the principal strain and Von Mises stress decrease after adding the cement on the structure and after the erosion operations. These results show that a stress shielding effect does occur and rises after resorption starts.