4 resultados para Maleic anhydride grafted reclaimed rubber
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The use of recycled materials in asphalt mixtures such as reclaimed asphalt pavements (RAP) have become widely accepted as a replacement for virgin asphalt binder or virgin aggregates. In this study, the RAP content was 30%, and CR additives were blended with the soft unmodified binder by using dry processes. The objective of this study was to investigate and evaluate the engineering properties of dry method application of crumb rubber influences on reclaimed asphalt pavement (RAP) mixtures. To evaluate the effect of rubber-bitumen interaction on the mixture’s mechanical properties, a laboratory investigation has been conducted on a range of dense graded and 30% RAP by dry process crumb rubber modified (CRM) asphalt mixtures containing 0% (control), 1% crumb rubber by the total aggregate mass. The experimental program in this research include the binder extraction for estimating the amount of aged binder in the both fine and coarse RAP material. Before extracting the binder the RAP sieve analysis, have been done to provide the Black grading curve. In continue after the binder extraction the material sieved again to providing the white curve. The comparison of Black and White curve indicated that there is a remarkable difference between the aggregate grading even for the fine RAP. The experimental program was continued by fabricating 12 specimens in different 4 types of mixtures. For the first group no RAP, no rejuvenator and no crumb rubber were used. For the second group 30% of virgin aggregates substituted by RAP material and the third group was similar to the second group just with 0.01% rejuvenator. the forth group was the group, which in that the specimens contain RAP, rejuvenator and crumb rubber. Finally the specimens were tested for Indirect tensile strength. The results indicated that the addition of crumb rubber increased the optimum amount of binder in the mixture with 30% RAP.
Resumo:
The objective of this study was to fundamentally characterize the laboratory performance of traditional hot mix asphalt (HMA) mixtures incorporating high RAP content and waste tire crumb rubber through their fundamental engineering properties. The nominal maximum aggregates size was chosen for this research was 12mm (considering the limitation of aggregate size for surface layer) and both coarse and fine aggregates are commonly used in Italy that were examined and analyzed in this study. On the other hand, the RAP plays an important role in reducing production costs and enhancing the environmentally sustainable pavements instead of using virgin materials in HMA. Particularly, this study has aimed to use 30% of RAP content (25% fine aggregate RAP and 5% coarse aggregate RAP) and 1% of CR additives by the total weight of aggregates for mix design. The mixture of aggregates, RAP and CR were blended with different amount of unmodified binder through dry processes. Generally, the main purposes of this study were investigating on capability of using RAP and CR in dense graded HMA and comparing the performance of rejuvenator in RAP with CR. In addition, based on the engineering analyses during the study, we were able compare the fundamental Indirect Tensile Strength (ITS) value of dense graded HMA and also mechanical characteristics in terms of Indirect Tensile Stiffness Modulus (ITSM). In order to get an extended comparable data, four groups of different mixtures such as conventional mixture with only virgin aggregates (DV), mixture with RAP (DR), mixture with RAP and rejuvenator (DRR), and mixture with RAP, rejuvenator, CR (DRRCr) were investigated in this research experimentally. Finally, the results of those tests indicated that the mixtures with RAP and CR had the high stiffness and less thermal sensitivity, while the mixture with virgin aggregates only had very low values in comparison.
Resumo:
This report studied the effect of crumb rubber in the asphalt mixture. The mixtures were also having limestone filler as a modifier. Mastic and mortar (mastic-fine aggregate system) mixture having different quantities of crumb rubber and limestone filler modifiers have been tested in order to find the best rutting resistance combination with an acceptable stiffness. The rheological tests on bituminous mastics and mortars have done in the laboratories in Nottingham Transport Engineering Centre (NTEC) and University of Bologna (DICAM). In the second chapter, an extensive literature review about the binders, additives, asphalt mixtures, various modelling and testing methods have been reviewed. In the third chapter, the physical and rheological properties of the binders have been investigated using both traditional devices and DSRs. The forth chapter is dedicated to finding the behaviour of the modified mastics (Binder-modifier system) with different combinations. Five different combinations of crumb rubber and limestone filler mastic tested with various methods using Dynamic Shear Rheometers. In the fifth chapter, in order to find the effect of the modifiers in the rheological properties of the complete asphalt mixture, the fine aggregates added to the same mastic combinations. In this phase, the behaviour of the system so-called mortar; binder, rubber, filler and fine aggregates) has been studied using the DSR device and the traditional tests. The results show that using fine crumb rubber reduces the thermo sensibility of the mastic (Binder Bitumen System) and improves its elasticity. Limestone filler in the other hand increases the mixture stiffness at high Frequencies. Another important outcome of this research was that the rheological properties of the mortars were following the same trend of the mastics, therefore study the rheological properties of the mastic gives an upright estimation of the mortar.
Resumo:
Protein purification plays a crucial role in biotechnology and biomanufacturing, where downstream unit operations account for 40%-80% of the overall costs. To overcome this issue, companies strive to simplify the separation process by reducing the number of steps and replacing expensive separation devices. In this context, commercially available polybutylene terephthalate (PBT) melt-blown nonwoven membranes have been developed as a novel disposable membrane chromatography support. The PBT nonwoven membrane is able to capture products and reduce contaminants by ion exchange chromatography. The PBT nonwoven membrane was modified by grafting a poly(glycidyl methacrylate) (GMA) layer by either photo-induced graft polymerization or heat induced graft polymerization. The epoxy groups of GMA monomer were subsequently converted into cation and anion exchangers by reaction with either sulfonic acid groups or diethylamine (DEA), respectively. Several parameters of the procedure were studied, especially the effect of (i) % weight gain and (ii) ligand density on the static protein binding capacity. Bovine Serum Albumin (BSA) and human Immunoglobulin G (hIgG) were utilized as model proteins in the anion and cation exchange studies. The performance of ion exchange PBT nonwovens by HIG was evaluated under flow conditions. The anion- and cation- exchange HIG PBT nonwovens were evaluated for their ability to selectively adsorb and elute BSA or hIgG from a mixture of proteins. Cation exchange nonwovens were not able to reach a good protein separation, whereas anion exchange HIG nonwovens were able to absorb and elute BSA with very high value of purity and yield, in only one step of purification.