3 resultados para Magnetocrystalline anisotropy
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
L’interazione che abbiamo con l’ambiente che ci circonda dipende sia da diverse tipologie di stimoli esterni che percepiamo (tattili, visivi, acustici, ecc.) sia dalla loro elaborazione per opera del nostro sistema nervoso. A volte però, l’integrazione e l’elaborazione di tali input possono causare effetti d’illusione. Ciò si presenta, ad esempio, nella percezione tattile. Infatti, la percezione di distanze tattili varia al variare della regione corporea considerata. Il concetto che distanze sulla cute siano frequentemente erroneamente percepite, è stato scoperto circa un secolo fa da Weber. In particolare, una determinata distanza fisica, è percepita maggiore su parti del corpo che presentano una più alta densità di meccanocettori rispetto a distanze applicate su parti del corpo con inferiore densità. Oltre a questa illusione, un importante fenomeno osservato in vivo è rappresentato dal fatto che la percezione della distanza tattile dipende dall’orientazione degli stimoli applicati sulla cute. In sostanza, la distanza percepita su una regione cutanea varia al variare dell’orientazione degli stimoli applicati. Recentemente, Longo e Haggard (Longo & Haggard, J.Exp.Psychol. Hum Percept Perform 37: 720-726, 2011), allo scopo di investigare come sia rappresentato il nostro corpo all’interno del nostro cervello, hanno messo a confronto distanze tattili a diverse orientazioni sulla mano deducendo che la distanza fra due stimoli puntuali è percepita maggiore se applicata trasversalmente sulla mano anziché longitudinalmente. Tale illusione è nota con il nome di Illusione Tattile Orientazione-Dipendente e diversi risultati riportati in letteratura dimostrano che tale illusione dipende dalla distanza che intercorre fra i due stimoli puntuali sulla cute. Infatti, Green riporta in un suo articolo (Green, Percpept Pshycophys 31, 315-323, 1982) il fatto che maggiore sia la distanza applicata e maggiore risulterà l’effetto illusivo che si presenta. L’illusione di Weber e l’illusione tattile orientazione-dipendente sono spiegate in letteratura considerando differenze riguardanti la densità di recettori, gli effetti di magnificazione corticale a livello della corteccia primaria somatosensoriale (regioni della corteccia somatosensoriale, di dimensioni differenti, sono adibite a diverse regioni corporee) e differenze nella dimensione e forma dei campi recettivi. Tuttavia tali effetti di illusione risultano molto meno rilevanti rispetto a quelli che ci si aspetta semplicemente considerando i meccanismi fisiologici, elencati in precedenza, che li causano. Ciò suggerisce che l’informazione tattile elaborata a livello della corteccia primaria somatosensoriale, riceva successivi step di elaborazione in aree corticali di più alto livello. Esse agiscono allo scopo di ridurre il divario fra distanza percepita trasversalmente e distanza percepita longitudinalmente, rendendole più simili tra loro. Tale processo assume il nome di “Rescaling Process”. I meccanismi neurali che operano nel cervello allo scopo di garantire Rescaling Process restano ancora largamente sconosciuti. Perciò, lo scopo del mio progetto di tesi è stato quello di realizzare un modello di rete neurale che simulasse gli aspetti riguardanti la percezione tattile, l’illusione orientazione-dipendente e il processo di rescaling avanzando possibili ipotesi circa i meccanismi neurali che concorrono alla loro realizzazione. Il modello computazionale si compone di due diversi layers neurali che processano l’informazione tattile. Uno di questi rappresenta un’area corticale di più basso livello (chiamata Area1) nella quale una prima e distorta rappresentazione tattile è realizzata. Per questo, tale layer potrebbe rappresentare un’area della corteccia primaria somatosensoriale, dove la rappresentazione della distanza tattile è significativamente distorta a causa dell’anisotropia dei campi recettivi e della magnificazione corticale. Il secondo layer (chiamato Area2) rappresenta un’area di più alto livello che riceve le informazioni tattili dal primo e ne riduce la loro distorsione mediante Rescaling Process. Questo layer potrebbe rappresentare aree corticali superiori (ad esempio la corteccia parietale o quella temporale) adibite anch’esse alla percezione di distanze tattili ed implicate nel Rescaling Process. Nel modello, i neuroni in Area1 ricevono informazioni dagli stimoli esterni (applicati sulla cute) inviando quindi informazioni ai neuroni in Area2 mediante sinapsi Feed-forward eccitatorie. Di fatto, neuroni appartenenti ad uno stesso layer comunicano fra loro attraverso sinapsi laterali aventi una forma a cappello Messicano. E’ importante affermare che la rete neurale implementata è principalmente un modello concettuale che non si preme di fornire un’accurata riproduzione delle strutture fisiologiche ed anatomiche. Per questo occorre considerare un livello astratto di implementazione senza specificare un’esatta corrispondenza tra layers nel modello e regioni anatomiche presenti nel cervello. Tuttavia, i meccanismi inclusi nel modello sono biologicamente plausibili. Dunque la rete neurale può essere utile per una migliore comprensione dei molteplici meccanismi agenti nel nostro cervello, allo scopo di elaborare diversi input tattili. Infatti, il modello è in grado di riprodurre diversi risultati riportati negli articoli di Green e Longo & Haggard.
Resumo:
In questo lavoro di tesi è stata studiata l'anisotropia magnetica di film sottili epitassiali di La0.7Sr0.3MnO3 (LSMO), cresciuti con la tecnica Channel Spark Ablation su substrati monocristallini di SrTiO3 (001). L'interesse nei confronti di questi materiali nasce dal fatto che, grazie alla loro proprietà di half-metallicity, sono usati come iniettori di spin in dispositivi per applicazioni in spintronica, l'elettronica che considera elemento attivo per l'informazione non solo la carica elettrica ma anche lo spin dei portatori. Un tipico esempio di dispositivo spintronico è la valvola di spin (un dispositivo costituito da due film ferromagnetici metallici separati da uno strato conduttore o isolante) il cui stato resistivo dipende dall'orientazione relativa dei vettori magnetizzazione (parallela o antiparallela) degli strati ferromagnetici. E’ quindi di fondamentale importanza conoscere i meccanismi di magnetizzazione dei film che fungono da iniettori di spin. Questa indagine è stata effettuata misurando cicli di isteresi magnetica grazie ad un magnetometro MOKE (magneto-optical Kerr effect). Le misure di campo coercitivo e della magnetizzazione di rimanenza al variare dell'orientazione del campo rispetto al campione, permettono di identificare l'anisotropia, cioè gli assi di facile e difficile magnetizzazione. I risultati delle misure indicano una diversa anisotropia in funzione dello spessore del film: anisotropia biassiale (cioè con due assi facili di magnetizzazione) per film spessi 40 nm e uniassiale (un asse facile) per film spessi 20 nm. L'anisotropia biassiale viene associata allo strain che il substrato cristallino induce nel piano del film, mentre l'origine dell'uniassialità trova la giustificazione più probabile nella morfologia del substrato, in particolare nella presenza di terrazzamenti che potrebbero indurre una step-induced anisotropy. Il contributo di questi fattori di anisotropia alla magnetizzazione è stato studiato anche in temperatura.
Resumo:
Sub-grid scale (SGS) models are required in order to model the influence of the unresolved small scales on the resolved scales in large-eddy simulations (LES), the flow at the smallest scales of turbulence. In the following work two SGS models are presented and deeply analyzed in terms of accuracy through several LESs with different spatial resolutions, i.e. grid spacings. The first part of this thesis focuses on the basic theory of turbulence, the governing equations of fluid dynamics and their adaptation to LES. Furthermore, two important SGS models are presented: one is the Dynamic eddy-viscosity model (DEVM), developed by \cite{germano1991dynamic}, while the other is the Explicit Algebraic SGS model (EASSM), by \cite{marstorp2009explicit}. In addition, some details about the implementation of the EASSM in a Pseudo-Spectral Navier-Stokes code \cite{chevalier2007simson} are presented. The performance of the two aforementioned models will be investigated in the following chapters, by means of LES of a channel flow, with friction Reynolds numbers $Re_\tau=590$ up to $Re_\tau=5200$, with relatively coarse resolutions. Data from each simulation will be compared to baseline DNS data. Results have shown that, in contrast to the DEVM, the EASSM has promising potentials for flow predictions at high friction Reynolds numbers: the higher the friction Reynolds number is the better the EASSM will behave and the worse the performances of the DEVM will be. The better performance of the EASSM is contributed to the ability to capture flow anisotropy at the small scales through a correct formulation for the SGS stresses. Moreover, a considerable reduction in the required computational resources can be achieved using the EASSM compared to DEVM. Therefore, the EASSM combines accuracy and computational efficiency, implying that it has a clear potential for industrial CFD usage.