3 resultados para MISSING TRANSVERSE-MOMENTUM

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Top quark studies play an important role in the physics program of the Large Hadron Collider (LHC). The energy and luminosity reached allow the acquisition of a large amount of data especially in kinematic regions never studied before. In this thesis is presented the measurement of the ttbar production differential cross section on data collected by ATLAS in 2012 in proton proton collisions at \sqrt{s} = 8 TeV, corresponding to an integrated luminosity of 20.3 fb^{−1}. The measurement is performed for ttbar events in the semileptonic channel where the hadronically decaying top quark has a transverse momentum above 300 GeV. The hadronic top quark decay is reconstructed as a single large radius jet and identified using jet substructure properties. The final differential cross section result has been compared with several theoretical distributions obtaining a discrepancy of about the 25% between data and predictions, depending on the MC generator. Furthermore the kinematic distributions of the ttbar production process are very sensitive to the choice of the parton distribution function (PDF) set used in the simulations and could provide constraints on gluons PDF. In particular in this thesis is performed a systematic study on the PDF of the protons, varying several PDF sets and checking which one better describes the experimental distributions. The boosted techniques applied in this measurement will be fundamental in the next data taking at \sqrt{s}=13 TeV when will be produced a large amount of heavy particles with high momentum.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since its discovery, top quark has represented one of the most investigated field in particle physics. The aim of this thesis is the reconstruction of hadronic top with high transverse momentum (boosted) with the Template Overlap Method (TOM). Because of the high energy, the decay products of boosted tops are partially or totally overlapped and thus they are contained in a single large radius jet (fat-jet). TOM compares the internal energy distributions of the candidate fat-jet to a sample of tops obtained by a MC simulation (template). The algorithm is based on the definition of an overlap function, which quantifies the level of agreement between the fat-jet and the template, allowing an efficient discrimination of signal from the background contributions. A working point has been decided in order to obtain a signal efficiency close to 90% and a corresponding background rejection at 70%. TOM performances have been tested on MC samples in the muon channel and compared with the previous methods present in literature. All the methods will be merged in a multivariate analysis to give a global top tagging which will be included in ttbar production differential cross section performed on the data acquired in 2012 at sqrt(s)=8 TeV in high phase space region, where new physics processes could be possible. Due to its peculiarity to increase the pT, the Template Overlap Method will play a crucial role in the next data taking at sqrt(s)=13 TeV, where the almost totality of the tops will be produced at high energy, making the standard reconstruction methods inefficient.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The t/t production cross section is measured with the CMS detector in the all-jets channel in $pp$ collisions at the centre-of-mass energy of 13 TeV. The analysis is based on the study of t/t events in the boosted topology, namely events in which decay products of the quark top have a high Lorentz boost and are thus reconstructed in the detector as a single, wide jet. The data sample used in this analysis corresponds to an integrated luminosity of 2.53 fb-1. The inclusive cross section is found to be sigma(t/t) = 727 +- 46 (stat.) +115-112 (sys.) +- 20~(lumi.) pb, a value which is consistent with the theoretical predictions. The differential, detector-level cross section is measured as a function of the transverse momentum of the leading jet and compared to the QCD theoretical predictions. Finally, the differential, parton-level cross section is reported, measured as a function of the transverse momentum of the leading parton, extrapolated to the full phase space and compared to the QCD predictions.