3 resultados para MICROBIOTA
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Il consumo di prodotti da forno lievitati in Italia, è rilevante in occasione di alcune feste religiose quali Pasqua e Natale. Prodotti come il Panettone e Colomba hanno acquisito una diffusione nazionale ed internazionale. Questi prodotti sono ottenuti mediante procedure specifiche caratterizzate da passaggi simili. In ogni caso la loro preparazione parte dall’utilizzo di un lievito madre continuamente rinfrescato. Il lievito madre (o impasto acido) è una miscela di acqua e farina fermentata da un microbiota complesso che include LAB, che producono acido lattico, e lieviti fermentativi che producono CO2 ed etanolo con conseguenze sulle caratteristiche reologiche e organolettiche, soprattutto per il profilo aromatico del prodotto finale. In questo lavoro mi sono occupato di valutare l’evoluzione della composizione microbica della Colomba nelle diverse fasi del processo produttivo, cercando di individuare le relazioni fra il microbiota e alcune caratteristiche chimico-fisiche del prodotto. Il lavoro di caratterizzazione del microbiota del prodotto, effettuato nelle diverse fasi del processo produttivo, ha mostrato come l’impasto madre sia caratterizzato da una bassa biodiversità sia di LAB che di lieviti. I microorganismi dominanti risultano essere due biotipi della specie L. sanfranciscensis e, per i lieviti, un solo biotipo della specie T. delbrueckii, con la comparsa di C. humilis solo in un campione con una frequenza relativa molto bassa. Per quel che riguarda l’evoluzione del microbiota durante il processo produttivo, l’aggiunta del lievito commerciale altera i rapporti tra LAB/ lieviti dove le concentrazioni dei LAB, durante impastamento, si riducono incidendo sulle caratteristiche chimico-fisiche degli impasti stessi in termini di maggiori valori di pH e ridotto contenuto in acido lattico. L’aggiunta di S. cerevisiae e successiva lievitazione incidono significativamente sul profilo aromatico del prodotto, in termini di riduzione di acidi (acido acetico) e di esteri ed aumento di molecole: etanolo, alcol fenetilico, acetaldeide ed acetoino, derivanti del lievito commerciale.
Resumo:
Le tecniche di next generation sequencing costituiscono un potente strumento per diverse applicazioni, soprattutto da quando i loro costi sono iniziati a calare e la qualità dei loro dati a migliorare. Una delle applicazioni del sequencing è certamente la metagenomica, ovvero l'analisi di microorganismi entro un dato ambiente, come per esempio quello dell'intestino. In quest'ambito il sequencing ha permesso di campionare specie batteriche a cui non si riusciva ad accedere con le tradizionali tecniche di coltura. Lo studio delle popolazioni batteriche intestinali è molto importante in quanto queste risultano alterate come effetto ma anche causa di numerose malattie, come quelle metaboliche (obesità, diabete di tipo 2, etc.). In questo lavoro siamo partiti da dati di next generation sequencing del microbiota intestinale di 5 animali (16S rRNA sequencing) [Jeraldo et al.]. Abbiamo applicato algoritmi ottimizzati (UCLUST) per clusterizzare le sequenze generate in OTU (Operational Taxonomic Units), che corrispondono a cluster di specie batteriche ad un determinato livello tassonomico. Abbiamo poi applicato la teoria ecologica a master equation sviluppata da [Volkov et al.] per descrivere la distribuzione dell'abbondanza relativa delle specie (RSA) per i nostri campioni. La RSA è uno strumento ormai validato per lo studio della biodiversità dei sistemi ecologici e mostra una transizione da un andamento a logserie ad uno a lognormale passando da piccole comunità locali isolate a più grandi metacomunità costituite da più comunità locali che possono in qualche modo interagire. Abbiamo mostrato come le OTU di popolazioni batteriche intestinali costituiscono un sistema ecologico che segue queste stesse regole se ottenuto usando diverse soglie di similarità nella procedura di clustering. Ci aspettiamo quindi che questo risultato possa essere sfruttato per la comprensione della dinamica delle popolazioni batteriche e quindi di come queste variano in presenza di particolari malattie.
Resumo:
L’interesse da parte dell’industria alimentare verso il melograno sta aumentando in virtù delle sue caratteristiche nutrizionali, come ad esempio l’alto contenuto di composti fenolici, che rendono tale frutto interessante per la produzione di succhi funzionali. Studi riportano che il microbiota di tali frutti è rappresentato principalmente da lieviti, muffe, batteri mesofili e lattici che possono proliferare durante la conservazione dei succhi. L’obiettivo di questa tesi è stato quello di valutare l’effetto di trattamenti di pastorizzazione di sul livello di contaminazione microbica di succo di melagrana ottenuto da arilli di due cultivar. A tale scopo si è valutata l’efficacia delle condizioni di trattamento adottate nell’inattivare la microflora naturalmente presente nei succhi di frutta e la sua capacità di recuperare durante la fase di conservazione a temperature sia di refrigerazione, che ambiente. Inoltre si è realizzato un challenge test in cui i succhi sono stati deliberatamente contaminati con S. cerevisiae, L. plantarum e diversi patogeni. I risultati hanno mostrato come il succo di melagrana sia un prodotto a breve shelf-life (5 giorni) quando conservato a temperatura ambiente poichè soggetto ad un rapido sviluppo della microflora. Infatti, sebbene i livelli di contaminazione iniziale rilevati fossero complessivamente bassi, i lieviti hanno raggiunto rapidamente la soglia critica di spoilage (6 Log UFC/ml) nei succhi freschi. Le condizioni di trattamento termico adottate hanno portato ad una significativa riduzione della microflora a livelli inferiori al limite di rilevabilità, e le cellule sopravvissute al trattamento non sono state in grado di proliferare nel succo conservato a 4°C per quasi 2 mesi. Quando conservati a temperatura ambiente, i succhi esposti al processo più blando hanno presentato una shelf-life di circa 25 giorni, mentre questa è aumentata fino oltre 32 giorni nei prodotti trattati più a lungo.