5 resultados para METAL COORDINATION CATALYST
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The gas-phase phenol methylation with methanol was investigated both from catalitic and spectroscopic point of view. In particular, the work focus on the behavior of metal oxide catalysts, like iron(III) vanadate and aluminum vanadate. Spectroscopic studies include: X-ray diffraction and Raman analysis for catalyst charactrerization; Diffuse reflectance infrared fourier transform spectroscopy and in-situ Infrared spectroscopy in vacuum for investigation of interactions between reactants and surface of catalysts.
Resumo:
High-valent terminal metal-oxygen adducts are supposed to be potent oxidising intermediates in enzymatic catalyses. In contrast to those from groups 6-8, oxidants that contain late transition metals (Co, Ni, Cu) are poorly understood. Because of their high reactivity, only a few examples of these compounds have been observed. The aim of this project was to investigate the reactivity of high-valent Ni(III) complexes, containing a monodentate oxygen-donor ligands, in hydrogen atom abstraction (HAA) and oxygen atom transfer (OAT) reactions which are typical of biological high-valent metal-oxygen species. Particularly, the Ni(III) complexes were generated in situ, at low temperature, from the oxidation of the Ni(II) species.The nickel complexes studied during this work were supported by tridentate ligands, with a strong σ-donating ability and exceedingly resistant to several common degradation pathways. These complexes vary based on the monodentate group in the fourth coordination position site, which can be neutral or anionic. In particular, we prepared four different Ni(III) complexes [NiIII(pyN2Me2)(OCO2H)] (12), [NiIII(pyN2Me2)(ONO2)] (14), [NiIII(pyN2Me2)(OC(O)CH3)] (18) and [NiIII(pyN2Me2)(OC(O)H)] (25). They feature a bicarbonate (-OCO2H), nitrate (-ONO2), acetate (-OC(O)CH3) and formate (-OC(O)H) group, respectively.HAA and OAT reactions were performed by adding 2,6-di-tert-butylphenol (2,6-DTBP) at -40°C, and triphenylphosphine (PPh3) at -80°C, to the in situ generated Ni(III) complexes, respectively. These reactions were carried out by adding 7 to 500 equivalents of substrate, in order to ensure pseudo-first order conditions. Since, the reactivity of the Ni(III) complex featured by the bicarbonate group has been studied in a previous work, we only investigated that of the species bearing the nitrate, acetate and formate ligand. Finally we compared the value of the reaction rate of all the four species in the HAA and OAT reactions.
Resumo:
Upgrade of hydrogen to valuable fuel is a central topic in modern research due to its high availability and low price. For the difficulties in hydrogen storage, different pathways are still under investigation. A promising way is in the liquid-phase chemical hydrogen storage materials, because they can lead to greener transformation processes with the on line development of hydrogen for fuel cells. The aim of my work was the optimization of catalysts for the decomposition of formic acid made by sol immobilisation method (a typical colloidal method). Formic acid was selected because of the following features: it is a versatile renewable reagent for green synthesis studies. The first aim of my research was the synthesis and optimisation of Pd nanoparticles by sol-immobilisation to achieve better catalytic performances and investigate the effect of particle size, oxidation state, role of stabiliser and nature of the support. Palladium was chosen because it is a well-known active metal for the catalytic decomposition of formic acid. Noble metal nanoparticles of palladium were immobilized on carbon charcoal and on titania. In the second part the catalytic performance of the “homemade” catalyst Pd/C to a commercial Pd/C and the effect of different monometallic and bimetallic systems (AuxPdy) in the catalytic formic acid decomposition was investigated. The training period for the production of this work was carried out at the University of Cardiff (Group of Dr. N. Dimitratos).
Resumo:
Co-Al-Ox mixed metal oxides partially modified with Cu or Mg, as well as Ag were successfully prepared, characterized and evaluated as potential catalysts for the N2O decomposition. The materials were characterized by the following techniques: X-Ray Diffraction, Thermogravimetric Analysis (TGA), N2 Physisorption, Hydrogen Temperature-Programmed Reduction (H2-TPR), and X-ray photoelectron spectroscopy (XPS). Ag-modified HT-derived mixed oxides showed enhanced activity compared to the undoped materials, the optimum composition was found for (1 wt.% Ag)CHT-Co3Al. The catalyst characterization studies suggested that the improved catalytic activity of Ag-promoted catalysts were mainly because of the altered redox properties of the materials.
Resumo:
Metal nanoparticle catalysts have in the last decades been extensively researched for their enhanced performance compared to their bulk counterpart. Properties of nanoparticles can be controlled by modifying their size and shape as well as adding a support and stabilizing agent. In this study, preformed colloidal gold nanoparticles supported on activated carbon were tested on the reduction of 4-nitrophenol by NaBH4, a model reaction for evaluating catalytic activity of metal nanoparticles and one with high significance in the remediation of industrial wastewaters. Methods of wastewater remediation are reviewed, with case studies from literature on two major reactions, ozonation and reduction, displaying the synergistic effects observed with bimetallic and trimetallic catalysts, as well as the effects of differences in metal and support. Several methods of preparation of nanoparticles are discussed, in particular, the sol immobilization technique, which was used to prepare the supported nanoparticles in this study. Different characterization techniques used in this study to evaluate the materials and spectroscopic techniques to analyze catalytic activities of the catalyst are reviewed: ultraviolet-visible (UV-Vis) spectroscopy, dynamic light scattering (DLS) analysis, X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM) imaging. Optimization of catalytic parameters was carried out through modifications in the reaction setup. The effects of the molar ratio of reactants, stirring, type and amount of stabilizing agent are explored. Another important factor of an effective catalyst is its reusability and long-term stability, which was examined with suggestions for further studies. Lastly, a biochar support was newly tested for its potential as a replacement for activated carbon.