6 resultados para MATHEMATICAL

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In questa tesi ci occuperemo di fornire un modello MIP di base e di alcune sue varianti, realizzate allo scopo di comprenderne il comportamento ed eventualmente migliorarne lefficienza. Le diverse varianti sono state costruite agendo in particolar modo sulla definizione di alcuni vincoli, oppure sui bound delle variabili, oppure ancora nellobbligare il risolutore a focalizzarsi su determinate decisioni o specifiche variabili. Sono stati testati alcuni dei problemi tipici presenti in letteratura e i diversi risultati sono stati opportunamente valutati e confrontati. Tra i riferimenti per tale confronto sono stati considerati anche i risultati ottenibili tramite un modello Constraint Programming, che notoriamente produce risultati apprezzabili in ambito di schedulazione. Un ulteriore scopo della tesi , infatti, comparare i due approcci Mathematical Programming e Constraint Programming, identificandone quindi i pregi e gli svantaggi e provandone la trasferibilit al modello raffrontato.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sudden cardiac death due to ventricular arrhythmia is one of the leading causes of mortality in the world. In the last decades, it has proven that anti-arrhythmic drugs, which prolong the refractory period by means of prolongation of the cardiac action potential duration (APD), play a good role in preventing of relevant human arrhythmias. However, it has long been observed that the class III antiarrhythmic effect diminish at faster heart rates and that this phenomenon represent a big weakness, since it is the precise situation when arrhythmias are most prone to occur. It is well known that mathematical modeling is a useful tool for investigating cardiac cell behavior. In the last 60 years, a multitude of cardiac models has been created; from the pioneering work of Hodgkin and Huxley (1952), who first described the ionic currents of the squid giant axon quantitatively, mathematical modeling has made great strides. The OHara model, that I employed in this research work, is one of the modern computational models of ventricular myocyte, a new generation began in 1991 with ventricular cell model by Noble et al. Successful of these models is that you can generate novel predictions, suggest experiments and provide a quantitative understanding of underlying mechanism. Obviously, the drawback is that they remain simple models, they dont represent the real system. The overall goal of this research is to give an additional tool, through mathematical modeling, to understand the behavior of the main ionic currents involved during the action potential (AP), especially underlining the differences between slower and faster heart rates. In particular to evaluate the rate-dependence role on the action potential duration, to implement a new method for interpreting ionic currents behavior after a perturbation effect and to verify the validity of the work proposed by Antonio Zaza using an injected current as a perturbing effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lo scopo della tesi descrivere i buchi neri di Kerr. Dopo aver introdotto tutti gli strumenti matematici necessari quali tensori, vettori di Killing e geodetiche, enunceremo la metrica di Kerr, il teorema no-hair e il frame-dragging. In seguito, a partire dalla metrica di Kerr, calcoleremo e descriveremo le ergosfere, gli orizzonti degli eventi e il moto dei fotoni nel piano equatoriale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In questa tesi viene presentato il modello di Keller-Segel per la chemiotassi, un sistema di tipo parabolico-ellittico che appare nella descrizione di molti fenomeni in ambito biologico e medico. Viene mostrata l'esistenza globale della soluzione debole del modello, per dati iniziali sufficientemente piccoli in dimensione N>2. La scelta di dati iniziali abbastanza grandi invece pu causare il blow-up della soluzione e viene mostrato sotto quali condizioni questo si verifica. Infine il modello della chemiotassi stato applicato per descrivere una fase della malattia di Alzheimer ed stata effettuata un'analisi di stabilit del sistema.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nel presente lavoro, ho studiato e trovato le soluzioni esatte di un modello matematico applicato ai recettori cellulari della famiglia delle integrine. Nel modello le integrine sono considerate come un sistema a due livelli, attivo e non attivo. Quando le integrine si trovano nello stato inattivo possono diffondere nella membrana, mentre quando si trovano nello stato attivo risultano cristallizzate nella membrana, incapaci di diffondere. La variazione di concentrazione nella superficie cellulare di una sostanza chiamata attivatore d luogo allattivazione delle integrine. Inoltre, questi eterodimeri possono legare una molecola inibitrice con funzioni di controllo e regolazione, che chiameremo v, la quale, legandosi al recettore, fa aumentare la produzione della sostanza attizzatrice, che chiameremo u. In questo modo si innesca un meccanismo di retroazione positiva. Linibitore v regola il meccanismo di produzione di u, ed assume, pertanto, il ruolo di modulatore. Infatti, grazie a questo sistema di fine regolazione il meccanismo di feedback positivo in grado di autolimitarsi. Si costruisce poi un modello di equazioni differenziali partendo dalle semplici reazioni chimiche coinvolte. Una volta che il sistema di equazioni impostato, si possono desumere le soluzioni per le concentrazioni dellinibitore e dellattivatore per un caso particolare dei parametri. Infine, si pu eseguire un test per vedere cosa predice il modello in termini di integrine. Per farlo, ho utilizzato unattivazione del tipo funzione gradino e lho inserita nel sistema, valutando la dinamica dei recettori. Si ottiene in questo modo un risultato in accordo con le previsioni: le integrine legate si trovano soprattutto ai limiti della zona attivata, mentre le integrine libere vengono a mancare nella zona attivata.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis we present a mathematical formulation of the interaction between microorganisms such as bacteria or amoebae and chemicals, often produced by the organisms themselves. This interaction is called chemotaxis and leads to cellular aggregation. We derive some models to describe chemotaxis. The first is the pioneristic Keller-Segel parabolic-parabolic model and it is derived by two different frameworks: a macroscopic perspective and a microscopic perspective, in which we start with a stochastic differential equation and we perform a mean-field approximation. This parabolic model may be generalized by the introduction of a degenerate diffusion parameter, which depends on the density itself via a power law. Then we derive a model for chemotaxis based on Cattaneo's law of heat propagation with finite speed, which is a hyperbolic model. The last model proposed here is a hydrodynamic model, which takes into account the inertia of the system by a friction force. In the limit of strong friction, the model reduces to the parabolic model, whereas in the limit of weak friction, we recover a hyperbolic model. Finally, we analyze the instability condition, which is the condition that leads to aggregation, and we describe the different kinds of aggregates we may obtain: the parabolic models lead to clusters or peaks whereas the hyperbolic models lead to the formation of network patterns or filaments. Moreover, we discuss the analogy between bacterial colonies and self gravitating systems by comparing the chemotactic collapse and the gravitational collapse (Jeans instability).