10 resultados para MAREL Carnot
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The main goal of this thesis is to understand and link together some of the early works by Michel Rumin and Pierre Julg. The work is centered around the so-called Rumin complex, which is a construction in subRiemannian geometry. A Carnot manifold is a manifold endowed with a horizontal distribution. If further a metric is given, one gets a subRiemannian manifold. Such data arise in different contexts, such as: - formulation of the second principle of thermodynamics; - optimal control; - propagation of singularities for sums of squares of vector fields; - real hypersurfaces in complex manifolds; - ideal boundaries of rank one symmetric spaces; - asymptotic geometry of nilpotent groups; - modelization of human vision. Differential forms on a Carnot manifold have weights, which produces a filtered complex. In view of applications to nilpotent groups, Rumin has defined a substitute for the de Rham complex, adapted to this filtration. The presence of a filtered complex also suggests the use of the formal machinery of spectral sequences in the study of cohomology. The goal was indeed to understand the link between Rumin's operator and the differentials which appear in the various spectral sequences we have worked with: - the weight spectral sequence; - a special spectral sequence introduced by Julg and called by him Forman's spectral sequence; - Forman's spectral sequence (which turns out to be unrelated to the previous one). We will see that in general Rumin's operator depends on choices. However, in some special cases, it does not because it has an alternative interpretation as a differential in a natural spectral sequence. After defining Carnot groups and analysing their main properties, we will introduce the concept of weights of forms which will produce a splitting on the exterior differential operator d. We shall see how the Rumin complex arises from this splitting and proceed to carry out the complete computations in some key examples. From the third chapter onwards we will focus on Julg's paper, describing his new filtration and its relationship with the weight spectral sequence. We will study the connection between the spectral sequences and Rumin's complex in the n-dimensional Heisenberg group and the 7-dimensional quaternionic Heisenberg group and then generalize the result to Carnot groups using the weight filtration. Finally, we shall explain why Julg required the independence of choices in some special Rumin operators, introducing the Szego map and describing its main properties.
Resumo:
The main task of this work is to present a concise survey on the theory of certain function spaces in the contexts of Hörmander vector fields and Carnot Groups, and to discuss briefly an application to some polyharmonic boundary value problems on Carnot Groups of step 2.
Resumo:
In questa trattazione ci proponiamo di analizzare e approfondire alcune delle definizioni fondamentali di funzione convessa; l’ambiente nel quale lavoreremo non si limiterà a quello euclideo, ma spazierà anche tra gruppo di Heisenberg e gruppo di Carnot. In questo lavoro dimostriamo una nuova caratterizzazione delle funzioni convesse in termini delle proprietà di sottomedia.
Resumo:
Scopo della tesi è di estendere un celebre teorema di Montel, sulle famiglie normali di funzioni olomorfe, all'ambiente sub-ellittico delle famiglie di soluzioni u dell'equazione Lu=0, dove L appartiene ad un'ampia classe di operatori differenziali alle derivate parziali reali del secondo ordine in forma di divergenza, comprendente i sub-Laplaciani sui gruppi di Carnot, i Laplaciani sub-ellittici su arbitrari gruppi di Lie, oltre all'operatore di Laplace-Beltrami su varietà di Riemann. A questo scopo, forniremo una versione sub-ellittica di un altro notevole risultato, dovuto a Koebe, che caratterizza le funzioni armoniche come punti fissi di opportuni operatori integrali di media con nuclei non banali. Sarà fornito anche un adeguato sostituto della formula integrale di Cauchy.
Resumo:
Nella presente tesi si cerca di tratteggiare lo sviluppo storico della disciplina trigonometrica: da fedele alleata di astronomia e geodesia, appendice naturale di effemeridi e manuali topografici, fino all’emancipazione a scienza autonoma, branca indipendente della matematica pura. Un cammino lungo ed affascinante che attraversa i millenni: dalle prime tracce individuabili nella civiltà egizia ed in quella mesopotamica fino alla definitiva fioritura e successiva sistemazione logica della trigonometria degli archi e delle corde, avvenuta nel mondo greco ed alessandrino. Poi il rinascimento culturale europeo, passando attraverso la tradizione indiana e la mediazione arabo-islamica. Quindi il preludio alla trigonometria moderna grazie al contributo di matematici del calibro di Viète e Napier, sino alla scoperta delle sue innumerevoli applicazioni alla fisica durante la gloriosa Rivoluzione Scientifica. Infine la nascita e lo studio sistematico delle funzioni circolari, colonne portanti dell’analisi, ad opera di Eulero ed ancora la Rivoluzione Francese con Carnot e Fourier. Ampio spazio, inoltre, è dedicato a problemi ed applicazioni pratiche tratte da manuali per la scuola secondaria largamente diffusi intorno alla metà del secolo scorso.
Resumo:
Nella tesi studiamo le densità con la proprietà di media per i sub-Laplaciani. In particolare determiniamo un’espressione generale per una densità positiva con la proprietà di media, su un insieme Ω generico che soddisfi certe prorpietà di regolarità. Troviamo inoltre delle stime della funzione di Green e del nucleo di Poisson per un qualsiasi sub-Laplaciano su un generico gruppo di Carnot e tramite queste stime troviamo delle condizioni sufficienti affinchè, con la densità precedentemente trovata, si possa avere una struttura di Γ-tripla sull’insieme Ω. Studiamo infine un problema inverso per il quale sarà fondamentale avere una struttura di Γ-tripla.