6 resultados para Low Autocorrelation Binary Sequence Problem
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
This thesis project studies the agent identity privacy problem in the scalar linear quadratic Gaussian (LQG) control system. For the agent identity privacy problem in the LQG control, privacy models and privacy measures have to be established first. It depends on a trajectory of correlated data rather than a single observation. I propose here privacy models and the corresponding privacy measures by taking into account the two characteristics. The agent identity is a binary hypothesis: Agent A or Agent B. An eavesdropper is assumed to make a hypothesis testing on the agent identity based on the intercepted environment state sequence. The privacy risk is measured by the Kullback-Leibler divergence between the probability distributions of state sequences under two hypotheses. By taking into account both the accumulative control reward and privacy risk, an optimization problem of the policy of Agent B is formulated. The optimal deterministic privacy-preserving LQG policy of Agent B is a linear mapping. A sufficient condition is given to guarantee that the optimal deterministic privacy-preserving policy is time-invariant in the asymptotic regime. An independent Gaussian random variable cannot improve the performance of Agent B. The numerical experiments justify the theoretic results and illustrate the reward-privacy trade-off. Based on the privacy model and the LQG control model, I have formulated the mathematical problems for the agent identity privacy problem in LQG. The formulated problems address the two design objectives: to maximize the control reward and to minimize the privacy risk. I have conducted theoretic analysis on the LQG control policy in the agent identity privacy problem and the trade-off between the control reward and the privacy risk.Finally, the theoretic results are justified by numerical experiments. From the numerical results, I expected to have some interesting observations and insights, which are explained in the last chapter.
Resumo:
The low-strength concrete is defined as a concrete where the compressive cubic strength is less than 15 MPa. Since the beginning of the last century, many low-strength concrete buildings and bridges have been built all over the world. Being short of deeper study, composite sheets are prohibited in strengthening of low-strength reinforced concrete members (CECS 146; ACI 440). Moreover, there are few relevant information about the long-term behavior and durability of strengthened RC members. This fact undoubtedly limits the use of the composite materials in the strengthening applications, therefore, it is necessary to study the behaviours of low-strength concrete elements strengthened with composite materials (FRP) for the preservation of historic constructions and innovation in the strengthening technology. Deformability is one of criteria in the design of concrete structures, and this for functionality, durability and aesthetics reasons. Civil engineer possibly encounters more deflection problems in the structural design than any other type of problem. Many materials common in structural engineering such as wood, concrete and composite materials, suffer creep; if the creep phenomenon is taken into account, checks for serviceability limit state criteria can become onerous, because the creep deformation in these materials is in the same order of magnitude as the elastic deformation. The thesis presents the results of an experimental study on the long-term behavior of low-strength reinforced concrete beams strengthened with carbon fiber composite sheets (CFRP). The work has investigated the accuracy of the long-term deflection predictions made by some analytical procedures existing in literature, as well as by the most widely used design codes (Eurocode 2, ACI-318, ACI-435).
Resumo:
Unmanned Aerial Vehicle (UAVs) equipped with cameras have been fast deployed to a wide range of applications, such as smart cities, agriculture or search and rescue applications. Even though UAV datasets exist, the amount of open and quality UAV datasets is limited. So far, we want to overcome this lack of high quality annotation data by developing a simulation framework for a parametric generation of synthetic data. The framework accepts input via a serializable format. The input specifies which environment preset is used, the objects to be placed in the environment along with their position and orientation as well as additional information such as object color and size. The result is an environment that is able to produce UAV typical data: RGB image from the UAVs camera, altitude, roll, pitch and yawn of the UAV. Beyond the image generation process, we improve the resulting image data photorealism by using Synthetic-To-Real transfer learning methods. Transfer learning focuses on storing knowledge gained while solving one problem and applying it to a different - although related - problem. This approach has been widely researched in other affine fields and results demonstrate it to be an interesing area to investigate. Since simulated images are easy to create and synthetic-to-real translation has shown good quality results, we are able to generate pseudo-realistic images. Furthermore, object labels are inherently given, so we are capable of extending the already existing UAV datasets with realistic quality images and high resolution meta-data. During the development of this thesis we have been able to produce a result of 68.4% on UAVid. This can be considered a new state-of-art result on this dataset.
Resumo:
Instrument transformers serve an important role in the protection and isolation of AC electrical systems for measurements of different electrical parameters like voltage, current, power factor, frequency, and energy. As suggested by name these transformers are used in connection with suitable measuring instruments like an ammeter, wattmeter, voltmeter, and energy meters. We have seen how higher voltages and currents are transformed into lower magnitudes to provide isolation between power networks, relays, and other instruments. Reducing transient, suppressing electrical noises in sensitive devices, standardization of instruments and relays up to a few volts and current. Transformer performance directly affects the accuracy of power system measurements and the reliability of relay protection. We classified transformers in terms of purpose, insulating medium, Voltage ranges, temperature ranges, humidity or environmental effect, indoor and outdoor use, performance, Features, specification, efficiency, cost analysis, application, benefits, and limitations which enabled us to comprehend their correct use and selection criteria based on our desired requirements. We also discussed modern Low power instrument transformer products that are recently launched or offered by renowned companies like Schneider Electric, Siemens, ABB, ZIV, G&W etc. These new products are innovations and problem solvers in the domain of measurement, protection, digital communication, advance, and commercial energy metering. Since there is always some space for improvements to explore new advantages of Low power instrument transformers in the domain of their wide linearity, high-frequency range, miniaturization, structural and technological modification, integration, smart frequency modeling, and output prediction of low-power voltage transformers.
Resumo:
In this thesis we address a multi-label hierarchical text classification problem in a low-resource setting and explore different approaches to identify the best one for our case. The goal is to train a model that classifies English school exercises according to a hierarchical taxonomy with few labeled data. The experiments made in this work employ different machine learning models and text representation techniques: CatBoost with tf-idf features, classifiers based on pre-trained models (mBERT, LASER), and SetFit, a framework for few-shot text classification. SetFit proved to be the most promising approach, achieving better performance when during training only a few labeled examples per class are available. However, this thesis does not consider all the hierarchical taxonomy, but only the first two levels: to address classification with the classes at the third level further experiments should be carried out, exploring methods for zero-shot text classification, data augmentation, and strategies to exploit the hierarchical structure of the taxonomy during training.
Resumo:
In this paper, a joint location-inventory model is proposed that simultaneously optimises strategic supply chain design decisions such as facility location and customer allocation to facilities, and tactical-operational inventory management and production scheduling decisions. All this is analysed in a context of demand uncertainty and supply uncertainty. While demand uncertainty stems from potential fluctuations in customer demands over time, supply-side uncertainty is associated with the risk of “disruption” to which facilities may be subject. The latter is caused by external factors such as natural disasters, strikes, changes of ownership and information technology security incidents. The proposed model is formulated as a non-linear mixed integer programming problem to minimise the expected total cost, which includes four basic cost items: the fixed cost of locating facilities at candidate sites, the cost of transport from facilities to customers, the cost of working inventory, and the cost of safety stock. Next, since the optimisation problem is very complex and the number of evaluable instances is very low, a "matheuristic" solution is presented. This approach has a twofold objective: on the one hand, it considers a larger number of facilities and customers within the network in order to reproduce a supply chain configuration that more closely reflects a real-world context; on the other hand, it serves to generate a starting solution and perform a series of iterations to try to improve it. Thanks to this algorithm, it was possible to obtain a solution characterised by a lower total system cost than that observed for the initial solution. The study concludes with some reflections and the description of possible future insights.