3 resultados para Longitudinal Data Analysis and Time Series
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The objective of this dissertation is to study the structure and behavior of the Atmospheric Boundary Layer (ABL) in stable conditions. This type of boundary layer is not completely well understood yet, although it is very important for many practical uses, from forecast modeling to atmospheric dispersion of pollutants. We analyzed data from the SABLES98 experiment (Stable Atmospheric Boundary Layer Experiment in Spain, 1998), and compared the behaviour of this data using Monin-Obukhov's similarity functions for wind speed and potential temperature. Analyzing the vertical profiles of various variables, in particular the thermal and momentum fluxes, we identified two main contrasting structures describing two different states of the SBL, a traditional and an upside-down boundary layer. We were able to determine the main features of these two states of the boundary layer in terms of vertical profiles of potential temperature and wind speed, turbulent kinetic energy and fluxes, studying the time series and vertical structure of the atmosphere for two separate nights in the dataset, taken as case studies. We also developed an original classification of the SBL, in order to separate the influence of mesoscale phenomena from turbulent behavior, using as parameters the wind speed and the gradient Richardson number. We then compared these two formulations, using the SABLES98 dataset, verifying their validity for different variables (wind speed and potential temperature, and their difference, at different heights) and with different stability parameters (zita or Rg). Despite these two classifications having completely different physical origins, we were able to find some common behavior, in particular under weak stability conditions.
Resumo:
VIRTIS, a bordo di Venus Express, è uno spettrometro in grado di operare da 0.25 a 5 µm. Nel periodo 2006-2011 ha ricavato un'enorme mole di dati ma a tutt'oggi le osservazioni al lembo sono poco utilizzate per lo studio delle nubi e delle hazes, specialmente di notte. Gli spettri al lembo a quote mesosferiche sono dominati dalla radianza proveniente dalle nubi e scatterata in direzione dello strumento dalle hazes. L'interpretazione degli spettri al lembo non può quindi prescindere dalla caratterizzazione dell'intera colonna atmosferica. L'obiettivo della tesi è di effettuare un’analisi statistica sulle osservazioni al nadir e proporre una metodologia per ricavare una caratterizzazione delle hazes combinando osservazioni al nadir e al lembo. La caratterizzazione delle nubi è avvenuta su un campione di oltre 3700 osservazioni al nadir. È stato creato un ampio dataset di spettri sintetici modificando, in un modello iniziale, vari parametri di nube quali composizione chimica, numero e dimensione delle particelle. Un processo di fit è stato applicato alle osservazioni per stabilire quale modello potesse descrivere gli spettri osservati. Si è poi effettuata una analisi statistica sui risultati del campione. Si è ricavata una concentrazione di acido solforico molto elevata nelle nubi basse, pari al 96% in massa, che si discosta dal valore generalmente utilizzato del 75%. Si sono poi integrati i risultati al nadir con uno studio mirato su poche osservazioni al lembo, selezionate in modo da intercettare nel punto di tangenza la colonna atmosferica osservata al nadir, per ricavare informazioni sulle hazes. I risultati di un modello Monte Carlo indicano che il numero e le dimensioni delle particelle previste dal modello base devono essere ridotte in maniera significativa. In particolare si osserva un abbassamento della quota massima delle hazes rispetto ad osservazioni diurne.
A Phase Space Box-counting based Method for Arrhythmia Prediction from Electrocardiogram Time Series
Resumo:
Arrhythmia is one kind of cardiovascular diseases that give rise to the number of deaths and potentially yields immedicable danger. Arrhythmia is a life threatening condition originating from disorganized propagation of electrical signals in heart resulting in desynchronization among different chambers of the heart. Fundamentally, the synchronization process means that the phase relationship of electrical activities between the chambers remains coherent, maintaining a constant phase difference over time. If desynchronization occurs due to arrhythmia, the coherent phase relationship breaks down resulting in chaotic rhythm affecting the regular pumping mechanism of heart. This phenomenon was explored by using the phase space reconstruction technique which is a standard analysis technique of time series data generated from nonlinear dynamical system. In this project a novel index is presented for predicting the onset of ventricular arrhythmias. Analysis of continuously captured long-term ECG data recordings was conducted up to the onset of arrhythmia by the phase space reconstruction method, obtaining 2-dimensional images, analysed by the box counting method. The method was tested using the ECG data set of three different kinds including normal (NR), Ventricular Tachycardia (VT), Ventricular Fibrillation (VF), extracted from the Physionet ECG database. Statistical measures like mean (μ), standard deviation (σ) and coefficient of variation (σ/μ) for the box-counting in phase space diagrams are derived for a sliding window of 10 beats of ECG signal. From the results of these statistical analyses, a threshold was derived as an upper bound of Coefficient of Variation (CV) for box-counting of ECG phase portraits which is capable of reliably predicting the impeding arrhythmia long before its actual occurrence. As future work of research, it was planned to validate this prediction tool over a wider population of patients affected by different kind of arrhythmia, like atrial fibrillation, bundle and brunch block, and set different thresholds for them, in order to confirm its clinical applicability.