69 resultados para Logaritmo discreto, crittografia.
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
La firma digitale è uno degli sviluppi più importanti della crittografia a chiave pubblica, che permette di implementarne le funzionalità di sicurezza. La crittografia a chiave pubblica, introdotta nel 1976 da Diffie ed Hellman, è stata l'unica grande rivoluzione nella storia della crittografia. Si distacca in modo radicale da ciò che l'ha preceduta, sia perché i suoi algoritmi si basano su funzioni matematiche e non su operazioni di sostituzione e permutazione, ma sopratutto perché è asimmetrica: prevede l'uso di due chiavi distinte (mentre nelle crittografia simmetrica si usa una sola chiave condivisa tra le parti). In particolare, le funzioni matematiche su cui si basa tale crittografia sono funzioni ben note nella Teoria dei Numeri: ad esempio fattorizzazione, calcolo del logaritmo discreto. La loro importanza deriva dal fatto che si ritiene che siano 'computazionalmente intrattabili' da calcolare. Dei vari schemi per la firma digitale basati sulla crittografia a chiave pubblica, si è scelto di studiare quello proposto dal NIST (National Institute of Standard and Technology): il Digital Signature Standard (DSS), spesso indicato come DSA (Digital Signature Algorithm) dal nome dell'algoritmo che utilizza. Il presente lavoro è strutturato in tre capitoli. Nel Capitolo 1 viene introdotto il concetto di logaritmo discreto (centrale nell'algoritmo DSA) e vengono mostrati alcuni algoritmi per calcolarlo. Nel Capitolo 2, dopo una panoramica sulla crittografia a chiave pubblica, si dà una definizione di firma digitale e delle sue caratteristiche. Chiude il capitolo una spiegazione di un importante strumento utilizzato negli algoritmi di firma digitale: le funzioni hash. Nel Capitolo 3, infine, si analizza nel dettaglio il DSA nelle tre fasi che lo costituiscono (inizializzazione, generazione, verifica), mostrando come il suo funzionamento e la sua sicurezza derivino dai concetti precedentemente illustrati.
Resumo:
Questa tesi ha lo scopo di fornire una panoramica generale sulle curve ellittiche e il loro utilizzo nella crittografia moderna. L'ultima parte è invece focalizzata a descrivere uno specifico sistema per lo scambio sicuro di messaggi: la crittografia basata sull'identità. Quest'ultima utilizza uno strumento molto interessante, il pairing di Weil, che sarà introdotto nel contesto della teoria dei divisori di funzioni razionali sulle curve ellittiche.
Resumo:
Questa tesi introduce le basi della teoria della computazione quantistica, partendo da un approccio teorico-matematico al concetto di qubit per arrivare alla schematizzazione di alcuni circuiti per algoritmi quantistici, analizzando la differenza tra le porte logiche classiche e la loro versione quantistica. Segue poi una lista descrittiva di possibili applicazioni dei computer quantistici, divise per categorie, e i loro vantaggi rispetto ai computer classici. Tra le applicazioni rientrano la crittografia quantistica, gli algoritmi di fattorizzazione e del logaritmo discreto di Shor, il teletrasporto di informazione quantistica e molte altre. La parte più corposa della tesi riguarda le possibili implementazioni, ovvero come realizzare praticamente un computer quantistico rendendo entità fisiche i qubit. Di queste implementazioni vengono analizzati i vari aspetti necessari alla computazione quantistica, ovvero la creazione di stati iniziali, la misura di stati finali e le trasformazioni unitarie che rappresentano le porte logiche quantistiche. Infine vengono elencate le varie problematiche del modello preso in considerazione. Infine vengono citati alcuni esperimenti e modelli recenti che potrebbero vedere una realizzazione su scala industriale nei prossimi anni.
Resumo:
Nel presente lavoro è affrontato lo studio delle curve ellittiche viste come curve algebriche piane, più precisamente come cubiche lisce nel piano proiettivo complesso. Dopo aver introdotto nella prima parte le nozioni di Superfici compatte e orientabili e curve algebriche, tramite il teorema di classificazione delle Superfici compatte, se ne fornisce una preliminare classificazione basata sul genere della superficie e della curva, rispettivamente. Da qui, segue la definizione di curve ellittiche e uno studio più dettagliato delle loro pricipali proprietà, quali la possibilità di definirle tramite un'equazione affine nota come equazione di Weierstrass e la loro struttura intrinseca di gruppo abeliano. Si fornisce quindi un'ulteriore classificazione delle cubiche lisce, totalmente differente da quella precedente, che si basa invece sul modulo della cubica, invariante per trasformazioni proiettive. Infine, si considera un aspetto computazionale delle curve ellittiche, ovvero la loro applicazione nel campo della Crittografia. Grazie alla struttura che esse assumono sui campi finiti, sotto opportune ipotesi, i crittosistemi a chiave pubblica basati sul problema del logaritmo discreto definiti sulle curve ellittiche, a parità di sicurezza rispetto ai crittosistemi classici, permettono l'utilizzo di chiavi più corte, e quindi meno costose computazionalmente. Si forniscono quindi le definizioni di problema del logaritmo discreto classico e sulle curve ellittiche, ed alcuni esempi di algoritmi crittografici classici definiti su quest'ultime.