2 resultados para Localities embracing and accepting diversity (LEAD) program
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Nella tesi è analizzata nel dettaglio una proposta didattica sulla Fisica Quantistica elaborata dal gruppo di ricerca in Didattica della Fisica dell’Università di Bologna, in collaborazione con il gruppo di ricerca in Fisica Teorica e con ricercatori del CNR di Bologna. La proposta è stata sperimentata in diverse classi V di Liceo scientifico e dalle sperimentazioni sono emersi casi significativi di studenti che non sono riusciti ad accettare la teoria quantistica come descrizione convincente ad affidabile della realtà fisica (casi di non accettazione), nonostante sembrassero aver capito la maggior parte degli argomenti e essersi ‘appropriati’ del percorso per come gli era stato proposto. Da questa evidenza sono state formulate due domande di ricerca: (1) qual è la natura di questa non accettazione? Rispecchia una presa di posizione epistemologica o è espressione di una mancanza di comprensione profonda? (2) Nel secondo caso, è possibile individuare precisi meccanismi cognitivi che possono ostacolare o facilitare l’accettazione della fisica quantistica? L’analisi di interviste individuali degli studenti ha permesso di mettere in luce tre principali esigenze cognitive (cognitive needs) che sembrano essere coinvolte nell’accettazione e nell’apprendimento della fisica quantistica: le esigenze di visualizzabilità, comparabilità e di ‘realtà’. I ‘cognitive needs’ sono stati quindi utilizzati come strumenti di analisi delle diverse proposte didattiche in letteratura e del percorso di Bologna, al fine di metterne in luce le criticità. Sono state infine avanzate alcune proposte per un suo miglioramento.
Resumo:
Worldwide, biodiversity is decreasing due to climate change, habitat fragmentation and agricultural intensification. Bees are essential crops pollinator, but their abundance and diversity are decreasing as well. For their conservation, it is necessary to assess the status of bee population. Field data collection methods are expensive and time consuming thus, recently, new methods based on remote sensing are used. In this study we tested the possibility of using flower cover diversity estimated by UAV images (FCD-UAV) to assess bee diversity and abundance in 10 agricultural meadows in the Netherlands. In order to do so, field data of flower and bee diversity and abundance were collected during a campaign in May 2021. Furthermore, RGB images of the areas have been collected using Unmanned Aerial Vehicle (UAV) and post-processed into orthomosaics. Lastly, Random Forest machine learning algorithm was applied to estimate FCD of the species detected in each field. Resulting FCD was expressed with Shannon and Simpson diversity indices, which were successively correlated to bee Shannon and Simpson diversity indices, abundance and species richness. The results showed a positive relationship between FCD-UAV and in-situ collected data about bee diversity, evaluated with Shannon index, abundance and species richness. The strongest relationship was found between FCD (Shannon Index) and bee abundance with R2=0.52. Following, good correlations were found with bee species richness (R2=0.39) and bee diversity (R2=0.37). R2 values of the relationship between FCD (Simpson Index) and bee abundance, species richness and diversity were slightly inferior (0.45, 0.37 and 0.35, respectively). Our results suggest that the proposed method based on the coupling of UAV imagery and machine learning for the assessment of flower species diversity could be developed into valuable tools for large-scale, standardized and cost-effective monitoring of flower cover and of the habitat quality for bees.