3 resultados para Lithium-oxygen battery

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Technical diversity and various knowledge is required for the understanding of undoubtedly complex system such as a Lithium-ion battery. The peculiarity is to combine different techniques that allow a complete investigation while the battery is working. Nowadays, research on Li-ion batteries (LIBs) is experiencing an exponential growth in the development of new cathode materials. Accordingly, Li-rich and Ni-rich NMCs, which have similar layered structure of LiMO2 oxides, have been recently proposed. Despite the promising performance on them, still a lot of issues have to be resolved and the materials need a more in depth characterisation for further commercial applications. In this study LiMO2 material, in particular M = Co and Ni, will be presented. We have focused on the synthesis of pure LiCoO2 and LiNiO2 at first, followed by the mixed LiNi0.5Co0.5O2. Different ways of synthesis were investigated for LCO but the sol-gel-water method showed the best performances. An accurate and systematic structural characterization followed by the appropriate electrochemical tests were done. Moreover, the in situ techniques (in-situ XRD and in situ OEMS) allowed a deep investigation in the structural change and gas evolution upon the electrochemically driven processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The voltage profile of the catenary between traction substations (TSSs) is affected by the trolleybus current intake and by its position with respect to the TSSs: the higher the current requested by the bus and the further the bus from the TSSs, the deeper the voltage drop. When the voltage drops below 500V, the trolleybus is forced to decrease its consumption by reducing its input current. This thesis deals with the analysis of the improvements that the installation of an BESS produces in the operation of a particularly loaded FS of the DC trolleybus network of the city of Bologna. The stationary BESS is charged by the TSSs during off-peak times and delivers the stored energy when the catenary is overloaded alleviating the load on the TSSs and reducing the voltage drops. Only IMC buses are considered in the prospect of a future disposal of all internal combustion engine vehicles. These trolleybuses cause deeper voltage drops because they absorb enough current to power their traction motor and recharge the on board battery. The control of the BESS aims to keep the catenary voltage within the admissible voltage range and makes sure that all physical limitations are met. A model of FS Marconi Trento Trieste is implemented in Simulink environment to simulate its daily operation and compare the behavior of the trolleybus network with and without BESS. From the simulation without BESS, the best location of the energy storage system is deduced, and the battery control is tuned. Furthermore, from the knowledge of the load curve and the battery control trans-characteristic, it is formulated a prediction of the voltage distribution at BESS connection point. The prediction is then compared with the simulation results to validate the Simulink model. The BESS allows to decrease the voltage drops along the catenary, the Joule losses and the current delivered by the TSSs, indicating that the BESS can be a solution to improve the operation of the trolleybus network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphite is a mineral commodity used as anode for lithium-ion batteries (LIBs), and its global demand is doomed to increase significantly in the future due to the forecasted global market demand of electric vehicles. Currently, the graphite used to produce LIBs is a mix of synthetic and natural graphite. The first one is produced by the crystallization of petroleum by-products and the second comes from mining, which causes threats related to pollution, social acceptance, and health. This MSc work has the objective of determining compositional and textural characteristics of natural, synthetic, and recycled graphite by using SEM-EDS, XRF, XRD, and TEM analytical techniques and couple these data with dynamic Material Flow Analysis (MFA) models, which have the objective of predicting the future global use of graphite in order to test the hypothesis that natural graphite will no longer be used in the LIB market globally. The mineral analyses reveal that the synthetic graphite samples contain less impurities than the natural graphite, which has a rolled internal structure similar to the recycled one. However, recycled graphite shows fractures and discontinuities of the graphene layers caused by the recycling process, but its rolled internal structure can help the Li-ions’ migration through the fractures. Three dynamic MFA studies have been conducted to test distinct scenarios that include graphite recycling in the period 2022-2050 and it emerges that - irrespective of any considered scenario - there will be an increase of synthetic graphite demand, caused by the limited stocks of battery scrap available. Hence, I conclude that both natural and recycled graphite is doomed to be used in the LIB market in the future, at least until the year 2050 when the stock of recycled graphite production will be enough to supersede natural graphite. In addition, some new improvement in the dismantling and recycling processes are necessary to improve the quality of recycled graphite.