5 resultados para Linear elliptic equations
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The purpose of this dissertation is to prove that the Dirichlet problem in a bounded domain is uniquely solvable for elliptic equations in divergence form. The proof can be achieved by Hilbert space methods based on generalized or weak solutions. Existence and uniqueness of a generalized solution for the Dirichlet problem follow from the Fredholm alternative and weak maximum principle.
Resumo:
In questa tesi si mostrano alcune applicazioni degli integrali ellittici nella meccanica Hamiltoniana, allo scopo di risolvere i sistemi integrabili. Vengono descritte le funzioni ellittiche, in particolare la funzione ellittica di Weierstrass, ed elenchiamo i tipi di integrali ellittici costruendoli dalle funzioni di Weierstrass. Dopo aver considerato le basi della meccanica Hamiltoniana ed il teorema di Arnold Liouville, studiamo un esempio preso dal libro di Moser-Integrable Hamiltonian Systems and Spectral Theory, dove si prendono in considerazione i sistemi integrabili lungo la geodetica di un'ellissoide, e il sistema di Von Neumann. In particolare vediamo che nel caso n=2 abbiamo un integrale ellittico.
Resumo:
Nel primo capitolo si riporta il principio del massimo per operatori ellittici. Sarà considerato, in un primo momento, l'operatore di Laplace e, successivamente, gli operatori ellittici del secondo ordine, per i quali si dimostrerà anche il principio del massimo di Hopf. Nel secondo capitolo si affronta il principio del massimo per operatori parabolici e lo si utilizza per dimostrare l'unicità delle soluzioni di problemi ai valori al contorno.
Resumo:
The scalar Schrödinger equation models the probability density distribution for a particle to be found in a point x given a certain potential V(x) forming a well with respect to a fixed energy level E_0. Formally two real inversion points a,b exist such that V(a)=V(b)=E_0, V(x)<0 in (a,b) and V(x)>0 for xb. Following the work made by D.Yafaev and performing a WKB approximation we obtain solutions defined on specific intervals. The aim of the first part of the thesis is to find a condition on E, which belongs to a neighbourhood of E_0, such that it is an eigenvalue of the Schrödinger operator, obtaining in this way global and linear dependent solutions in L2. In quantum mechanics this condition is known as Bohr-Sommerfeld quantization. In the second part we define a Schrödinger operator referred to two potential wells and we study the quantization conditions on E in order to have a global solution in L2xL2 with respect to the mutual position of the potentials. In particular their wells can be disjoint,can have an intersection, can be included one into the other and can have a single point intersection. For these cases we refer to the works of A.Martinez, S. Fujiié, T. Watanabe, S. Ashida.