6 resultados para Limestone.

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During pressure filtration, the filter cake can experience deformation. When the filter cake exhibits elastic rheological behaviour, it expands while the pressure is released and, if adjacent liquid is present, re-wetting may occur. Such an expanding filter cake can pick up liquid already removed, worsening solid-liquid separation performances. Undesired phenomena such as filter cake re-wetting run contrary to solid-liquid separation performances and, specifically, to the separation target of obtaining a high dry solid content. At the industrial level, even a small quantity of liquid that can be additionally removed is beneficial. Re-wetting phenomenon is investigated using two different limestone materials and different filters and felts, respectively. Water storage capacity of filters and felts and elastic properties of filters, felts, and filter cakes are investigated. The elastic tests performed show that the filters and the felts are non-linear viscoelastic materials and can have a potential for re-wetting, while the limestone filter cakes are not showing measurable elastic deformation under decompression. However, during a filtration test an additional felt layer placed under the filter seems to result in a slightly higher cake dryness, i.e., an increase of the cake dryness by around 1% only. This difference may not be attributed to the re-wetting effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural stones have been widely used in the construction field since antiquity. Building materials undergo decay processes due to mechanical,chemical, physical and biological causes that can act together. Therefore an interdisciplinary approach is required in order to understand the interaction between the stone and the surrounding environment. Utilization of buildings, inadequate restoration activities and in general anthropogenic weathering factors may contribute to this degradation process. For this reasons, in the last few decades new technologies and techniques have been developed and introduced in the restoration field. Consolidants are largely used in restoration and conservation of cultural heritage in order to improve the internal cohesion and to reduce the weathering rate of building materials. It is important to define the penetration depth of a consolidant for determining its efficacy. Impregnation mainly depends on the microstructure of the stone (i.e. porosity) and on the properties of the product itself. Throughout this study, tetraethoxysilane (TEOS) applied on globigerina limestone samples has been chosen as object of investigation. After hydrolysis and condensation, TEOS deposits silica gel inside the pores, improving the cohesion of the grains. X-ray computed tomography has been used to characterize the internal structure of the limestone samples,treated and untreated with a TEOS-based consolidant. The aim of this work is to investigate the penetration depth and the distribution of the TEOS inside the porosity, using both traditional approaches and advanced X-ray tomographic techniques, the latter allowing the internal visualization in three dimensions of the materials. Fluid transport properties and porosity have been studied both at macroscopic scale, by means of capillary uptake tests and radiography, and at microscopic scale,investigated with X-ray Tomographic Microscopy (XTM). This allows identifying changes in the porosity, by comparison of the images before and after the treatment, and locating the consolidant inside the stone. Tests were initially run at University of Bologna, where characterization of the stone was carried out. Then the research continued in Switzerland: X-ray tomography and radiography were performed at Empa, Swiss Federal Laboratories for Materials Science and Technology, while XTM measurements with synchrotron radiation were run at Paul Scherrer Institute in Villigen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report studied the effect of crumb rubber in the asphalt mixture. The mixtures were also having limestone filler as a modifier. Mastic and mortar (mastic-fine aggregate system) mixture having different quantities of crumb rubber and limestone filler modifiers have been tested in order to find the best rutting resistance combination with an acceptable stiffness. The rheological tests on bituminous mastics and mortars have done in the laboratories in Nottingham Transport Engineering Centre (NTEC) and University of Bologna (DICAM). In the second chapter, an extensive literature review about the binders, additives, asphalt mixtures, various modelling and testing methods have been reviewed. In the third chapter, the physical and rheological properties of the binders have been investigated using both traditional devices and DSRs. The forth chapter is dedicated to finding the behaviour of the modified mastics (Binder-modifier system) with different combinations. Five different combinations of crumb rubber and limestone filler mastic tested with various methods using Dynamic Shear Rheometers. In the fifth chapter, in order to find the effect of the modifiers in the rheological properties of the complete asphalt mixture, the fine aggregates added to the same mastic combinations. In this phase, the behaviour of the system so-called mortar; binder, rubber, filler and fine aggregates) has been studied using the DSR device and the traditional tests. The results show that using fine crumb rubber reduces the thermo sensibility of the mastic (Binder Bitumen System) and improves its elasticity. Limestone filler in the other hand increases the mixture stiffness at high Frequencies. Another important outcome of this research was that the rheological properties of the mortars were following the same trend of the mastics, therefore study the rheological properties of the mastic gives an upright estimation of the mortar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The disintegration of stone materials used in sculpture and architecture due to the crystallization of salts is capable of irreparably damaging artistic objects and historic buildings. A number of phosphonates and carboxylates were tested here as potential crystallization modifiers for sodium carbonate crystallization. Precipitated phases during crystallization induced either by cooling or by evaporation tests were nahcolite (NaHCO3), natron (Na2CO3∙10H2O) and thermonatrite (Na2CO3∙H2O), identified using X-ray diffraction. By using the thermodynamic code PHREEQC and the calculation of the nucleation rate it was demonstrated that nahcolite had to be first phase formed during both tests. The formation of the other phases depended on the experimental conditions under which the two tests were conducted. Nahcolite nucleation is strongly inhibited in the presence of sodium citrate tribasic dihydrate (CA), polyacrylic acid 2100MW (PA) and etidronic acid (HEDP), when the additives are dosed at appropriate concentrations and the pH range of the resulting solution is about 8. Electrostatic attraction generated between the deprotonated organic additives and the cations present in solution appears to be the principal mechanism of additive-nahcolite interaction. Salt weathering tests, in addition to mercury intrusion porosimetry tests allowed to quantify the damage induced by such salts. FESEM observation of both salts grown on calcite single crystals and in limestone blocks subjected to salt crystallization tests allowed to identify the effect of these additives on crystal growth and development. The results show that PA seems to be the best inhibitor, while CA and HEDP, which show similar behaviors, are slightly less effective. The use of such effective crystallization inhibitors may lead to more efficient preventive conservation of ornamental stone affected by crystallization damage due to formation of sodium carbonate crystals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis focuses on finding the optimum block cutting dimensions in terms of the environmental and economic factors by using a 3D algorithm for a limestone quarry in Foggia, Italy. The environmental concerns of quarrying operations are mainly: energy consumption, material waste, and pollution. The main economic concerns are the block recovery, the selling prices, and the production costs. Fractures adversely affect the block recovery ratio. With a fracture model, block production can be optimized. In this research, the waste volume produced by quarrying was minimised to increase the recovery ratio and ensure economic benefits. SlabCutOpt is a software developed at DICAM–University of Bologna for block cutting optimization which tests different cutting angles on the x-y-z planes to offer up alternative cutting methods. The program tests several block sizes and outputs the optimal result for each entry. By using SlabCutOpt, ten different block dimensions were analysed, the results indicated the maximum number of non-intersecting blocks for each dimension. After analysing the outputs, the block named number 1 with the dimensions ‘1mx1mx1m’ had the highest recovery ratio as 43% and the total Relative Money Value (RMV) with a value of 22829. Dimension number 1, also had the lowest waste volume, with a value of 3953.25 m3, for the total bench. For cutting the total bench volume of 6932.25m3, the diamond wire cutter had the lowest dust emission values for the block with the dimension ‘2mx2mx2m’, with a value of 24m3. When compared with the Eco-Label standards, block dimensions having surface area values lower than 15m2, were found to fit the natural resource waste criteria of the label, as the threshold required 25% of minimum recovery [1]. Due to the relativity of production costs, together with the Eco-Label threshold, the research recommends the selection of the blocks with a surface area value between 6m2 and 14m2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The waterproofing of hydraulic structure is done traiditionally like laying road on dam surface but with specific modified binders. An italian firm recently patented a new method that is re-adaptation of typical surface treatment of roads. The purpose of this study is to find out best aggregate-bitumen mixture that can perform well under service conditions of a large hydraulic structure such as dams. So, 4 different hard modified bitumen were tested with 2 aggregate types i.e. limestone and basalt. The experimental program contained the testing of bitumen aggregate adhesion, using the rolling bottle test and rheology of hard modified binders using multiple stress creep and recovery test and dynamic viscosity test. The results and discussion are presented in detail in this work.