3 resultados para Learning-Content-System
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The aim of this work is to develop a prototype of an e-learning environment that can foster Content and Language Integrated Learning (CLIL) for students enrolled in an aircraft maintenance training program, which allows them to obtain a license valid in all EU member states. Background research is conducted to retrace the evolution of the field of educational technology, analyzing different learning theories – behaviorism, cognitivism, and (socio-)constructivism – and reflecting on how technology and its use in educational contexts has changed over time. Particular attention is given to technologies that have been used and proved effective in Computer Assisted Language Learning (CALL). Based on the background research and on students’ learning objectives, i.e. learning highly specialized contents and aeronautical technical English, a bilingual approach is chosen, three main tools are identified – a hypertextbook, an exercise creation activity, and a discussion forum – and the learning management system Moodle is chosen as delivery medium. The hypertextbook is based on the technical textbook written in English students already use. In order to foster text comprehension, the hypertextbook is enriched by hyperlinks and tooltips. Hyperlinks redirect students to webpages containing additional information both in English and in Italian, while tooltips show Italian equivalents of English technical terms. The exercise creation activity and the discussion forum foster interaction and collaboration among students, according to socio-constructivist principles. In the exercise creation activity, students collaboratively create a workbook, which allow them to deeply analyze and master the contents of the hypertextbook and at the same time create a learning tool that can help them, as well as future students, to enhance learning. In the discussion forum students can discuss their individual issues, content-related, English-related or e-learning environment-related, helping one other and offering instructors suggestions on how to improve both the hypertextbook and the workbook based on their needs.
Resumo:
This thesis presents a study of the Grid data access patterns in distributed analysis in the CMS experiment at the LHC accelerator. This study ranges from the deep analysis of the historical patterns of access to the most relevant data types in CMS, to the exploitation of a supervised Machine Learning classification system to set-up a machinery able to eventually predict future data access patterns - i.e. the so-called dataset “popularity” of the CMS datasets on the Grid - with focus on specific data types. All the CMS workflows run on the Worldwide LHC Computing Grid (WCG) computing centers (Tiers), and in particular the distributed analysis systems sustains hundreds of users and applications submitted every day. These applications (or “jobs”) access different data types hosted on disk storage systems at a large set of WLCG Tiers. The detailed study of how this data is accessed, in terms of data types, hosting Tiers, and different time periods, allows to gain precious insight on storage occupancy over time and different access patterns, and ultimately to extract suggested actions based on this information (e.g. targetted disk clean-up and/or data replication). In this sense, the application of Machine Learning techniques allows to learn from past data and to gain predictability potential for the future CMS data access patterns. Chapter 1 provides an introduction to High Energy Physics at the LHC. Chapter 2 describes the CMS Computing Model, with special focus on the data management sector, also discussing the concept of dataset popularity. Chapter 3 describes the study of CMS data access patterns with different depth levels. Chapter 4 offers a brief introduction to basic machine learning concepts and gives an introduction to its application in CMS and discuss the results obtained by using this approach in the context of this thesis.