6 resultados para Lattice gauge theories, Spin chains
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
I modelli su reticolo con simmetrie SU(n) sono attualmente oggetto di studio sia dal punto di vista sperimentale, sia dal punto di vista teorico; particolare impulso alla ricerca in questo campo è stato dato dai recenti sviluppi in campo sperimentale per quanto riguarda la tecnica dell’intrappolamento di atomi ultrafreddi in un reticolo ottico. In questa tesi viene studiata, sia con tecniche analitiche sia con simulazioni numeriche, la generalizzazione del modello di Heisenberg su reticolo monodimensionale a simmetria SU(3). In particolare, viene proposto un mapping tra il modello di Heisenberg SU(3) e l’Hamiltoniana con simmetria SU(2) bilineare-biquadratica con spin 1. Vengono inoltre presentati nuovi risultati numerici ottenuti con l’algoritmo DMRG che confermano le previsioni teoriche in letteratura sul modello in esame. Infine è proposto un approccio per la formulazione della funzione di partizione dell’Hamiltoniana bilineare-biquadratica a spin-1 servendosi degli stati coerenti per SU(3).
Resumo:
In questa tesi abbiamo presentato il calcolo dell’Entropia di Entanglement di un sistema quantistico unidimensionale integrabile la cui rappresentazione statistica é data dal modello RSOS, il cui punto critico é una realizzazione su reticolo di tutti i modelli conformi minimali. Sfruttando l’integrabilitá di questi modelli, abbiamo svolto il calcolo utilizzando la tecnica delle Corner Transfer Matrices (CTM). Il risultato ottenuto si discosta leggermente dalla previsione di J. Cardy e P. Calabrese ricavata utilizzando la teoria dei campi conformi descriventi il punto critico. Questa differenza é stata imputata alla non-unitarietá del modello studiato, in quanto la tecnica CTM studia il ground state, mentre la previsione di Cardy e Calabrese si focalizza sul vuoto conforme del modello: nel caso dei sistemi non-unitari questi due stati non coincidono, ma possono essere visti come eccitazioni l’uno dell’altro. Dato che l’Entanglement é un fenomeno genuinamente quantistico e il modello RSOS descrive un sistema statistico classico bidimensionale, abbiamo proposto una Hamiltoniana quantistica unidimensionale integrabile la cui rappresentazione statistica é data dal modello RSOS.
Resumo:
In questa tesi abbiamo studiato il comportamento delle entropie di Entanglement e dello spettro di Entanglement nel modello XYZ attraverso delle simulazioni numeriche. Le formule per le entropie di Von Neumann e di Renyi nel caso di una catena bipartita infinita esistevano già, ma mancavano ancora dei test numerici dettagliati. Inoltre, rispetto alla formula per l'Entropia di Entanglement di J. Cardy e P. Calabrese per sistemi non critici, tali relazioni presentano delle correzioni che non hanno ancora una spiegazione analitica: i risultati delle simulazioni numeriche ne hanno confermato la presenza. Abbiamo inoltre testato l'ipotesi che lo Schmidt Gap sia proporzionale a uno dei parametri d'ordine della teoria, e infine abbiamo simulato numericamente l'andamento delle Entropie e dello spettro di Entanglement in funzione della lunghezza della catena di spin. Ciò è stato possibile solo introducendo dei campi magnetici ''ad hoc'' nella catena, con la proprietà che l'andamento delle suddette quantità varia a seconda di come vengono disposti tali campi. Abbiamo quindi discusso i vari risultati ottenuti.
Resumo:
La simulazione di un sistema quantistico complesso rappresenta ancora oggi una sfida estremamente impegnativa a causa degli elevati costi computazionali. La dimensione dello spazio di Hilbert cresce solitamente in modo esponenziale all'aumentare della taglia, rendendo di fatto impossibile una implementazione esatta anche sui più potenti calcolatori. Nel tentativo di superare queste difficoltà, sono stati sviluppati metodi stocastici classici, i quali tuttavia non garantiscono precisione per sistemi fermionici fortemente interagenti o teorie di campo in regimi di densità finita. Di qui, la necessità di un nuovo metodo di simulazione, ovvero la simulazione quantistica. L'idea di base è molto semplice: utilizzare un sistema completamente controllabile, chiamato simulatore quantistico, per analizzarne un altro meno accessibile. Seguendo tale idea, in questo lavoro di tesi si è utilizzata una teoria di gauge discreta con simmetria Zn per una simulazione dell'elettrodinamica quantistica in (1+1)D, studiando alcuni fenomeni di attivo interesse di ricerca, come il diagramma di fase o la dinamica di string-breaking, che generalmente non sono accessibili mediante simulazioni classiche. Si propone un diagramma di fase del modello caratterizzato dalla presenza di una fase confinata, in cui emergono eccitazioni mesoniche ed antimesoniche, cioè stati legati particella-antiparticella, ed una fase deconfinata.
Resumo:
In questa tesi il Gruppo di Rinormalizzazione non-perturbativo (FRG) viene applicato ad una particolare classe di modelli rilevanti in Gravit`a quantistica, conosciuti come Tensorial Group Field Theories (TGFT). Le TGFT sono teorie di campo quantistiche definite sulla variet`a di un gruppo G. In ogni dimensione esse possono essere espanse in grafici di Feynman duali a com- plessi simpliciali casuali e sono caratterizzate da interazioni che implementano una non-localit`a combinatoriale. Le TGFT aspirano a generare uno spaziotempo in un contesto background independent e precisamente ad ottenere una descrizione con- tinua della sua geometria attraverso meccanismi fisici come le transizioni di fase. Tra i metodi che meglio affrontano il problema di estrarre le transizioni di fase e un associato limite del continuo, uno dei pi` u efficaci `e il Gruppo di Rinormalizzazione non-perturbativo. In questo elaborato ci concentriamo su TGFT definite sulla variet`a di un gruppo non-compatto (G = R) e studiamo il loro flusso di Rinormalizzazione. Identifichiamo con successo punti fissi del flusso di tipo IR, e una superficie critica che suggerisce la presenza di transizioni di fase in regime Infrarosso. Ci`o spinge ad uno stu- dio per approfondire la comprensione di queste transizioni di fase e della fisica continua che vi `e associata. Affrontiamo inoltre il problema delle divergenze Infrarosse, tramite un processo di regolarizzazione che definisce il limite termodinamico appropriato per le TGFT. Infine, applichiamo i metodi precedentementi sviluppati ad un modello dotato di proiezione sull’insieme dei campi gauge invarianti. L’analisi, simile a quella applicata al modello precedente, conduce nuovamente all’identificazione di punti fissi (sia IR che UV) e di una superficie critica. La presenza di transizioni di fasi `e, dunque, evidente ancora una volta ed `e possibile confrontare il risultato col modello senza proiezione sulla dinamica gauge invariante.
Resumo:
In this study wave propagation, dispersion relations, and energy relations for linear elastic periodic systems are analyzed. In particular, the dispersion relations for monoatomic chain of infinite dimension are obtained analytically by writing the Block-type wave equation for a unit cell in order to capture the dynamic behavior for chains under prescribed vibration. By comparing the discretized model (mass-spring chain) with the solid bar system, the nonlinearity of the dispersion relation for chain indicates that the periodic lattice is dispersive in contrast to the continuous rod, which is non dispersive. Further investigations have been performed considering one-dimensional diatomic linear elastic mass-spring chain. The dispersion relations, energy velocity, and group velocity have been derived. At certain range of frequencies harmonic plane waves do not propagate in contrast with monoatomic chain. Also, since the diatomic chain considered is a linear elastic chain, both of the energy velocity and the group velocity are identical. As long as the linear elastic condition is considered the results show zero flux condition without residual energy. In addition, this paper shows that the diatomic chain dispersion relations are independent on the unit cell scheme. Finally, an extension for the study covers the dispersion and energy relations for 2D- grid system. The 2x2 grid system show a periodicity of the dispersion surface in the wavenumber domain. In addition, the symmetry of the surface can be exploited to identify an Irreducible Brillouin Zone (IBZ). Compact representations of the dispersion properties of multidimensional periodic systems are obtained by plotting frequency as the wave vector’s components vary along the boundary of the IBZ, which leads to a widely accepted and effective visualization of bandgaps and overall dispersion properties.