5 resultados para Latent and Sensible Heat Fluxes
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The Bora wind is a mesoscale phenomenon which typically affects the Adriatic Sea basin for several days each year, especially during winter. The Bora wind has been studied for its intense outbreak across the Dinaric Alps. The properties of the Bora wind are widely discussed in the literature and scientific papers usually focus on the eastern Adriatic coast where strong turbulence and severe gust intensity are more pronounced. However, the impact of the Bora wind can be significant also over Italy, not only in terms of wind speed instensity. Depending on the synoptic pressure pattern (cyclonic or anticyclonic Bora) and on the season, heavy snowfall, severe storms, storm surges and floods can occur along the Adriatic coast and on the windward flanks of the Apennines. In the present work five Bora cases that occurred in recent years have been selected and their evolution has been simulated with the BOLAM-MOLOCH model set, developed at ISAC-CNR in Bologna. Each case study has been addressed by a control run and by several sensitivity tests, performed with the purpose of better understanding the role played by air-sea latent and sensible heat fluxes. The tests show that the removal of the fluxes induces modifications in the wind approching the coast and a decrease of the total precipitation amount predicted over Italy. In order to assess the role of heat fluxes, further analysis has been carried out: column integrated water vapour fluxes have been computed along the Italian coastline and an atmospheric water balance has been evaluated inside a box volume over the Adriatic Sea. The balance computation shows that, although latent heat flux produces a significant impact on the precipitation field, its contribution to the balance is relatively minor. The most significant and lasting case study, that of February 2012, has been studied in more detail in order to explain the impressive drop in the total precipitation amount simulated in the sensitivity tests with removed heat fluxes with respect to the CNTRL run. In these experiments relative humidity and potential temperature distribution over different cross-sections have been examined. With respect to the CNTRL run a drier and more stable boundary layer, characterised by a more pronounced wind shear at the lower levels, has been observed to establish above the Adriatic Sea. Finally, in order to demonstrate that also the interaction of the Bora flow with the Apennines plays a crucial role, sensitivity tests varying the orography height have been considered. The results of such sensitivity tests indicate that the propagation of the Bora wind over the Adriatic Sea, and in turn its meteorological impact over Italy, is influenced by both the large air-sea heat fluxes and the interaction with the Apennines that decelerate the upstream flow.
Resumo:
La tesi presenta il criterio di regolarità di Wiener dell’ambito classico dell’operatore di Laplace ed in seguito alcune nozioni di teoria del potenziale e la dimostrazione del criterio nel caso dell’operatore del calore; in questa seconda sezione viene dedicata particolare attenzione alle formule di media e ad una diseguaglianza forte di Harnack, che risultano fondamentali nella trattazione dell’argomento centrale.
Resumo:
Global climate change is impacting coral reefs worldwide, with approximately 19% of reefs being permanently degraded, 15% showing symptoms of imminent collapse, and 20% at risk of becoming critically affected in the next few decades. This alarming level of reef degradation is mainly due to an increase in frequency and intensity of natural and anthropogenic disturbances. Recent evidence has called into question whether corals have the capacity to acclimatize or adapt to climate changes and some groups of corals showed inherent physiological tolerance to environmental stressors. The aim of the present study was to evaluate mRNA expression patterns underlying differences in thermal tolerance in specimen of the common reef-building coral Pocillopora verrucosa collected at different locations in Bangka Island waters (North Sulawesi, Indonesia). Part of the experimental work was carried out at the CoralEye Reef Research Outpost (Bangka Island). This includes sampling of corals at selected sites and at different depths (3 and 12 m) as well as their experimental exposure to an increased water temperature under controlled conditions for 3 and 7 days. Levels of mRNAs encoding ATP synthase (ATPs) NADH dehydrogenase (NDH) and a 70kDa Heat Shock Protein (HSP70) were evaluated by quantitative real time PCR. Transcriptional profiles evaluated under field conditions suggested an adaptation to peculiar local environmental conditions in corals collected at different sites and at the low depth. Nevertheless, high–depth collected corals showed a less pronounced site-to-site separation suggesting more homogenous environmental conditions. Exposure to an elevated temperature under controlled conditions pointed out that corals adapted to the high depth are more sensitive to the effects of thermal stress, so that reacted to thermal challenge by significantly over-expressing the selected gene products. Being continuously exposed to fluctuating environmental conditions, low-depth adapted corals are more resilient to the stress stimulus, and indeed showed unaffected or down-regulated mRNA expression profiles. Overall these results highlight that transcriptional profiles of selected genes involved in cellular stress response are modulated by natural seasonal temperature changes in P. verrucosa. Moreover, specimens living in more variable habitats (low-depth) exhibit higher basal HSP70 mRNA levels, possibly enhancing physiological tolerance to environmental stressors.
Resumo:
Air-sea interactions are a key process in the forcing of the ocean circulation and the climate. Water Mass Formation is a phenomenon related to extreme air-sea exchanges and heavy heat losses by the water column, being capable to transfer water properties from the surface to great depth and constituting a fundamental component of the thermohaline circulation of the ocean. Wind-driven Coastal Upwelling, on the other hand, is capable to induce intense heat gain in the water column, making this phenomenon important for climate change; further, it can have a noticeable influence on many biological pelagic ecosystems mechanisms. To study some of the fundamental characteristics of Water Mass Formation and Coastal Upwelling phenomena in the Mediterranean Sea, physical reanalysis obtained from the Mediterranean Forecating System model have been used for the period ranging from 1987 to 2012. The first chapter of this dissertation gives the basic description of the Mediterranean Sea circulation, the MFS model implementation, and the air-sea interaction physics. In the second chapter, the problem of Water Mass Formation in the Mediterranean Sea is approached, also performing ad-hoc numerical simulations to study heat balance components. The third chapter considers the study of Mediterranean Coastal Upwelling in some particular areas (Sicily, Gulf of Lion, Aegean Sea) of the Mediterranean Basin, together with the introduction of a new Upwelling Index to characterize and predict upwelling features using only surface estimates of air-sea fluxes. Our conclusions are that latent heat flux is the driving air-sea heat balance component in the Water Mass Formation phenomenon, while sensible heat exchanges are fundamental in Coastal Upwelling process. It is shown that our upwelling index is capable to reproduce the vertical velocity patterns in Coastal Upwelling areas. Nondimensional Marshall numbers evaluations for the open-ocean convection process in the Gulf of Lion show that it is a fully turbulent, three-dimensional phenomenon.
Resumo:
Recent studies found that soil-atmosphere coupling features, through soil moisture, have been crucial to simulate well heat waves amplitude, duration and intensity. Moreover, it was found that soil moisture depletion both in Winter and Spring anticipates strong heat waves during the Summer. Irrigation in geophysical studies can be intended as an anthropogenic forcing to the soil-moisture, besides changes in land proprieties. In this study, the irrigation was add to a LAM hydrostatic model (BOLAM) and coupled with the soil. The response of the model to irrigation perturbation is analyzed during a dry Summer season. To identify a dry Summer, with overall positive temperature anomalies, an extensive climatological characterization of 2015 was done. The method included a statistical validation on the reference period distribution used to calculate the anomalies. Drought conditions were observed during Summer 2015 and previous seasons, both on the analyzed region and the Alps. Moreover July was characterized as an extreme event for the referred distribution. The numerical simulation consisted on the summer season of 2015 and two run: a control run (CTR), with the soil coupling and a perturbed run (IPR). The perturbation consists on a mask of land use created from the Cropland FAO dataset, where an irrigation water flux of 3 mm/day was applied from 6 A.M. to 9 A.M. every day. The results show that differences between CTR and IPR has a strong daily cycle. The main modifications are on the air masses proprieties, not on to the dynamics. However, changes in the circulation at the boundaries of the Po Valley are observed, and a diagnostic spatial correlation of variable differences shows that soil moisture perturbation explains well the variation observed in the 2 meters height temperature and in the latent heat fluxes.On the other hand, does not explain the spatial shift up and downslope observed during different periods of the day. Given the results, irrigation process affects the atmospheric proprieties on a larger scale than the irrigation, therefore it is important in daily forecast, particularly during hot and dry periods.