10 resultados para Language-based security
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Today more than ever, with the recent war in Ukraine and the increasing number of attacks that affect systems of nations and companies every day, the world realizes that cybersecurity can no longer be considered just as a “cost”. It must become a pillar for our infrastructures that involve the security of our nations and the safety of people. Critical infrastructure, like energy, financial services, and healthcare, have become targets of many cyberattacks from several criminal groups, with an increasing number of resources and competencies, putting at risk the security and safety of companies and entire nations. This thesis aims to investigate the state-of-the-art regarding the best practice for securing Industrial control systems. We study the differences between two security frameworks. The first is Industrial Demilitarized Zone (I-DMZ), a perimeter-based security solution. The second one is the Zero Trust Architecture (ZTA) which removes the concept of perimeter to offer an entirely new approach to cybersecurity based on the slogan ‘Never Trust, always verify’. Starting from this premise, the Zero Trust model embeds strict Authentication, Authorization, and monitoring controls for any access to any resource. We have defined two architectures according to the State-of-the-art and the cybersecurity experts’ guidelines to compare I-DMZ, and Zero Trust approaches to ICS security. The goal is to demonstrate how a Zero Trust approach dramatically reduces the possibility of an attacker penetrating the network or moving laterally to compromise the entire infrastructure. A third architecture has been defined based on Cloud and fog/edge computing technology. It shows how Cloud solutions can improve the security and reliability of infrastructure and production processes that can benefit from a range of new functionalities, that the Cloud could offer as-a-Service.We have implemented and tested our Zero Trust solution and its ability to block intrusion or attempted attacks.
Resumo:
Web is constantly evolving, thanks to the 2.0 transition, HTML5 new features and the coming of cloud-computing, the gap between Web and traditional desktop applications is tailing off. Web-apps are more and more widespread and bring several benefits compared to traditional ones. On the other hand reference technologies, JavaScript primarly, are not keeping pace, so a paradim shift is taking place in Web programming, and so many new languages and technologies are coming out. First objective of this thesis is to survey the reference and state-of-art technologies for client-side Web programming focusing in particular on what concerns concurrency and asynchronous programming. Taking into account the problems that affect existing technologies, we finally design simpAL-web, an innovative approach to tackle Web-apps development, based on the Agent-oriented programming abstraction and the simpAL language. == Versione in italiano: Il Web è in continua evoluzione, grazie alla transizione verso il 2.0, alle nuove funzionalità introdotte con HTML5 ed all’avvento del cloud-computing, il divario tra le applicazioni Web e quelle desktop tradizionali va assottigliandosi. Le Web-apps sono sempre più diffuse e presentano diversi vantaggi rispetto a quelle tradizionali. D’altra parte le tecnologie di riferimento, JavaScript in primis, non stanno tenendo il passo, motivo per cui la programmazione Web sta andando incontro ad un cambio di paradigma e nuovi linguaggi e tecnologie stanno spuntando sempre più numerosi. Primo obiettivo di questa tesi è di passare al vaglio le tecnologie di riferimento ed allo stato dell’arte per quel che riguarda la programmmazione Web client-side, porgendo particolare attenzione agli aspetti inerenti la concorrenza e la programmazione asincrona. Considerando i principali problemi di cui soffrono le attuali tecnologie passeremo infine alla progettazione di simpAL-web, un approccio innovativo con cui affrontare lo sviluppo di Web-apps basato sulla programmazione orientata agli Agenti e sul linguaggio simpAL.
Resumo:
Most of the existing open-source search engines, utilize keyword or tf-idf based techniques to find relevant documents and web pages relative to an input query. Although these methods, with the help of a page rank or knowledge graphs, proved to be effective in some cases, they often fail to retrieve relevant instances for more complicated queries that would require a semantic understanding to be exploited. In this Thesis, a self-supervised information retrieval system based on transformers is employed to build a semantic search engine over the library of Gruppo Maggioli company. Semantic search or search with meaning can refer to an understanding of the query, instead of simply finding words matches and, in general, it represents knowledge in a way suitable for retrieval. We chose to investigate a new self-supervised strategy to handle the training of unlabeled data based on the creation of pairs of ’artificial’ queries and the respective positive passages. We claim that by removing the reliance on labeled data, we may use the large volume of unlabeled material on the web without being limited to languages or domains where labeled data is abundant.
Resumo:
Artificial Intelligence is reshaping the field of fashion industry in different ways. E-commerce retailers exploit their data through AI to enhance their search engines, make outfit suggestions and forecast the success of a specific fashion product. However, it is a challenging endeavour as the data they possess is huge, complex and multi-modal. The most common way to search for fashion products online is by matching keywords with phrases in the product's description which are often cluttered, inadequate and differ across collections and sellers. A customer may also browse an online store's taxonomy, although this is time-consuming and doesn't guarantee relevant items. With the advent of Deep Learning architectures, particularly Vision-Language models, ad-hoc solutions have been proposed to model both the product image and description to solve this problems. However, the suggested solutions do not exploit effectively the semantic or syntactic information of these modalities, and the unique qualities and relations of clothing items. In this work of thesis, a novel approach is proposed to address this issues, which aims to model and process images and text descriptions as graphs in order to exploit the relations inside and between each modality and employs specific techniques to extract syntactic and semantic information. The results obtained show promising performances on different tasks when compared to the present state-of-the-art deep learning architectures.
Resumo:
With the advent of high-performance computing devices, deep neural networks have gained a lot of popularity in solving many Natural Language Processing tasks. However, they are also vulnerable to adversarial attacks, which are able to modify the input text in order to mislead the target model. Adversarial attacks are a serious threat to the security of deep neural networks, and they can be used to craft adversarial examples that steer the model towards a wrong decision. In this dissertation, we propose SynBA, a novel contextualized synonym-based adversarial attack for text classification. SynBA is based on the idea of replacing words in the input text with their synonyms, which are selected according to the context of the sentence. We show that SynBA successfully generates adversarial examples that are able to fool the target model with a high success rate. We demonstrate three advantages of this proposed approach: (1) effective - it outperforms state-of-the-art attacks by semantic similarity and perturbation rate, (2) utility-preserving - it preserves semantic content, grammaticality, and correct types classified by humans, and (3) efficient - it performs attacks faster than other methods.
Resumo:
The aim of this work is to develop a prototype of an e-learning environment that can foster Content and Language Integrated Learning (CLIL) for students enrolled in an aircraft maintenance training program, which allows them to obtain a license valid in all EU member states. Background research is conducted to retrace the evolution of the field of educational technology, analyzing different learning theories – behaviorism, cognitivism, and (socio-)constructivism – and reflecting on how technology and its use in educational contexts has changed over time. Particular attention is given to technologies that have been used and proved effective in Computer Assisted Language Learning (CALL). Based on the background research and on students’ learning objectives, i.e. learning highly specialized contents and aeronautical technical English, a bilingual approach is chosen, three main tools are identified – a hypertextbook, an exercise creation activity, and a discussion forum – and the learning management system Moodle is chosen as delivery medium. The hypertextbook is based on the technical textbook written in English students already use. In order to foster text comprehension, the hypertextbook is enriched by hyperlinks and tooltips. Hyperlinks redirect students to webpages containing additional information both in English and in Italian, while tooltips show Italian equivalents of English technical terms. The exercise creation activity and the discussion forum foster interaction and collaboration among students, according to socio-constructivist principles. In the exercise creation activity, students collaboratively create a workbook, which allow them to deeply analyze and master the contents of the hypertextbook and at the same time create a learning tool that can help them, as well as future students, to enhance learning. In the discussion forum students can discuss their individual issues, content-related, English-related or e-learning environment-related, helping one other and offering instructors suggestions on how to improve both the hypertextbook and the workbook based on their needs.
Resumo:
Nowadays communication is switching from a centralized scenario, where communication media like newspapers, radio, TV programs produce information and people are just consumers, to a completely different decentralized scenario, where everyone is potentially an information producer through the use of social networks, blogs, forums that allow a real-time worldwide information exchange. These new instruments, as a result of their widespread diffusion, have started playing an important socio-economic role. They are the most used communication media and, as a consequence, they constitute the main source of information enterprises, political parties and other organizations can rely on. Analyzing data stored in servers all over the world is feasible by means of Text Mining techniques like Sentiment Analysis, which aims to extract opinions from huge amount of unstructured texts. This could lead to determine, for instance, the user satisfaction degree about products, services, politicians and so on. In this context, this dissertation presents new Document Sentiment Classification methods based on the mathematical theory of Markov Chains. All these approaches bank on a Markov Chain based model, which is language independent and whose killing features are simplicity and generality, which make it interesting with respect to previous sophisticated techniques. Every discussed technique has been tested in both Single-Domain and Cross-Domain Sentiment Classification areas, comparing performance with those of other two previous works. The performed analysis shows that some of the examined algorithms produce results comparable with the best methods in literature, with reference to both single-domain and cross-domain tasks, in $2$-classes (i.e. positive and negative) Document Sentiment Classification. However, there is still room for improvement, because this work also shows the way to walk in order to enhance performance, that is, a good novel feature selection process would be enough to outperform the state of the art. Furthermore, since some of the proposed approaches show promising results in $2$-classes Single-Domain Sentiment Classification, another future work will regard validating these results also in tasks with more than $2$ classes.
Resumo:
Conventional inorganic materials for x-ray radiation sensors suffer from several drawbacks, including their inability to cover large curved areas, me- chanical sti ffness, lack of tissue-equivalence and toxicity. Semiconducting organic polymers represent an alternative and have been employed as di- rect photoconversion material in organic diodes. In contrast to inorganic detector materials, polymers allow low-cost and large area fabrication by sol- vent based methods. In addition their processing is compliant with fexible low-temperature substrates. Flexible and large-area detectors are needed for dosimetry in medical radiotherapy and security applications. The objective of my thesis is to achieve optimized organic polymer diodes for fexible, di- rect x-ray detectors. To this end polymer diodes based on two different semi- conducting polymers, polyvinylcarbazole (PVK) and poly(9,9-dioctyluorene) (PFO) have been fabricated. The diodes show state-of-the-art rectifying be- haviour and hole transport mobilities comparable to reference materials. In order to improve the X-ray stopping power, high-Z nanoparticle Bi2O3 or WO3 where added to realize a polymer-nanoparticle composite with opti- mized properities. X-ray detector characterization resulted in sensitivties of up to 14 uC/Gy/cm2 for PVK when diodes were operated in reverse. Addition of nanoparticles could further improve the performance and a maximum sensitivy of 19 uC/Gy/cm2 was obtained for the PFO diodes. Compared to the pure PFO diode this corresponds to a five-fold increase and thus highlights the potentiality of nanoparticles for polymer detector design. In- terestingly the pure polymer diodes showed an order of magnitude increase in sensitivity when operated in forward regime. The increase was attributed to a different detection mechanism based on the modulation of the diodes conductivity.
Resumo:
The main goal of this thesis is to report patterns of perceived safety in the context of airport infrastructure, taking the airport of Bologna as reference. Many personal and environmental attributes are investigated to paint the profile of the sensitive passenger and to understand why precise factors of the transit environment are so impactful on the individual. The main analyses are based on a 2014-2015 passengers’ survey, involving almost six thousand of incoming and outgoing passengers. Other reports are used to implement and support the resource. The analysis is carried out by using a combination of Chi-square tests and binary logistic regressions. Findings shows that passengers result to be particularly affected by the perception of airport’s environment (e.g., state and maintenance of facilities, clarity and efficacy of information system, functionality of elevators and escalators), but also by the way how the passenger reaches the airport and the quality of security checks. In relation to such results, several suggestions are provided for the improvement of passenger satisfaction with safety. The attention is then focused on security checkpoints and related operations, described on a theoretical and technical ground. We present an example of how to realize a proper model of the security checks area of Bologna’s airport, with the aim to assess present performances of the system and consequences of potential variations. After a brief introduction to Arena, a widespread simulation software, the existing model is described, pointing out flaws and limitations. Such model is finally updated and changed in order to make it more reliable and more representative of the reality. Different scenarios are tested and results are compared using graphs and tables.
Resumo:
Internet traffic classification is a relevant and mature research field, anyway of growing importance and with still open technical challenges, also due to the pervasive presence of Internet-connected devices into everyday life. We claim the need for innovative traffic classification solutions capable of being lightweight, of adopting a domain-based approach, of not only concentrating on application-level protocol categorization but also classifying Internet traffic by subject. To this purpose, this paper originally proposes a classification solution that leverages domain name information extracted from IPFIX summaries, DNS logs, and DHCP leases, with the possibility to be applied to any kind of traffic. Our proposed solution is based on an extension of Word2vec unsupervised learning techniques running on a specialized Apache Spark cluster. In particular, learning techniques are leveraged to generate word-embeddings from a mixed dataset composed by domain names and natural language corpuses in a lightweight way and with general applicability. The paper also reports lessons learnt from our implementation and deployment experience that demonstrates that our solution can process 5500 IPFIX summaries per second on an Apache Spark cluster with 1 slave instance in Amazon EC2 at a cost of $ 3860 year. Reported experimental results about Precision, Recall, F-Measure, Accuracy, and Cohen's Kappa show the feasibility and effectiveness of the proposal. The experiments prove that words contained in domain names do have a relation with the kind of traffic directed towards them, therefore using specifically trained word embeddings we are able to classify them in customizable categories. We also show that training word embeddings on larger natural language corpuses leads improvements in terms of precision up to 180%.