4 resultados para Laminate veneer
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In the last decade the near-surface mounted (NSM) strengthening technique using carbon fibre reinforced polymers (CFRP) has been increasingly used to improve the load carrying capacity of concrete members. Compared to externally bonded reinforcement (EBR), the NSM system presents considerable advantages. This technique consists in the insertion of carbon fibre reinforced polymer laminate strips into pre-cut slits opened in the concrete cover of the elements to be strengthened. CFRP reinforcement is bonded to concrete with an appropriate groove filler, typically epoxy adhesive or cement grout. Up to now, research efforts have been mainly focused on several structural aspects, such as: bond behaviour, flexural and/or shear strengthening effectiveness, and energy dissipation capacity of beam-column joints. In such research works, as well as in field applications, the most widespread adhesives that are used to bond reinforcements to concrete are epoxy resins. It is largely accepted that the performance of the whole application of NSM systems strongly depends on the mechanical properties of the epoxy resins, for which proper curing conditions must be assured. Therefore, the existence of non-destructive methods that allow monitoring the curing process of epoxy resins in the NSM CFRP system is desirable, in view of obtaining continuous information that can provide indication in regard to the effectiveness of curing and the expectable bond behaviour of CFRP/adhesive/concrete systems. The experimental research was developed at the Laboratory of the Structural Division of the Civil Engineering Department of the University of Minho in Guimar\~aes, Portugal (LEST). The main objective was to develop and propose a new method for continuous quality control of the curing of epoxy resins applied in NSM CFRP strengthening systems. This objective is pursued through the adaptation of an existing technique, termed EMM-ARM (Elasticity Modulus Monitoring through Ambient Response Method) that has been developed for monitoring the early stiffness evolution of cement-based materials. The experimental program was composed of two parts: (i) direct pull-out tests on concrete specimens strengthened with NSM CFRP laminate strips were conducted to assess the evolution of bond behaviour between CFRP and concrete since early ages; and, (ii) EMM-ARM tests were carried out for monitoring the progressive stiffness development of the structural adhesive used in CFRP applications. In order to verify the capability of the proposed method for evaluating the elastic modulus of the epoxy, static E-Modulus was determined through tension tests. The results of the two series of tests were then combined and compared to evaluate the possibility of implementation of a new method for the continuous monitoring and quality control of NSM CFRP applications.
Resumo:
The goal of this thesis is to make static tensile test on four Carbon Fiber Reinforced Polymer laminates, in such a way as to obtain the ultimate tensile strength of these laminates; in particular, the laminates analyzed were produced by Hand Lay-up technology. Testing these laminates we have a reference point on which to compare other laminates and in particular CFRP laminate produced by RTM technology.
Resumo:
In questa tesi si affronta lo studio di piastre isotrope e laminate mediante metodo GDQ e si confrontano i risultati con quelli ottenuti, per le stesse tipologie di piastre, mediante metodo FEM. Lo scopo del lavoro e quello di certificare la maggior efficienza del software di calcolo DiQuMASPAB, basato su teorie in forma forte, rispetto ai tradizionali software di calcolo agli elementi finiti attualmente in commercio. Il confronto ha come obiettivo quello di evidenziare i punti deboli dal punto di vista dell'approssimazione delle soluzioni e del costo computazonale.
Resumo:
Nanofibrous membranes are a promising material for tailoring the properties of laminated CFRP composites by embedding them into the structure. This project aimed to understand the effect of number, position and thickness of nanofibrous modifications specifically on the damping behaviour of the resulting nano-modified CFRP composite with an epoxy matrix. An improvement of damping capacity is expected to improve a composites lifetime and fatigue resistance by prohibiting the formation of microcracks and consequently hindering delamination, it also promises a rise in comfort for a range of final products by intermission of vibration propagation and therefore diminution of noise. Electrospinning was the technique employed to produce nanofibrous membranes from a blend of polymeric solutions. SEM, WAXS and DSC were utilised to evaluate the quality of the obtained membranes before they were introduced, following a specific stacking sequence, in the production process of the laminate. A suitable curing cycle in an autoclave was applied to mend the modifications together with the matrix material, ensuring full crosslinking of the matrix and therefore finalising the production process. DMA was exercised in order to gain an understanding about the effects of the different modifications on the properties of the composite. During this investigation it became apparent that a high number of modifications of laminate CFRP composites, with an epoxy matrix, with thick rubbery nanofibrous membranes has a positive effect on the damping capacity and the temperature range the effect applies in. A suggestion for subsequent studies as well as a recommendation for the production of nano-modified CFRP structures is included at the end of this document.