5 resultados para Lagrangian submanifold

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cosmological constant Λ seems to be a not satisfactory explanation of the late-time accelerated expansion of the Universe, for which a number of experimental evidences exist; therefore, it has become necessary in the last years to consider alternative models of dark energy, meant as cause of the accelerated expansion. In the study of dark energy models, it is important to understand which quantities can be determined starting from observational data, without assuming any hypothesis on the cosmological model; such quantities have been determined in Amendola, Kunz et al., 2012. In the same paper it has been further shown that it is possible to estabilish a relation between the model-independent parameters and the anisotropic stress η, which can be also expressed as a combination of the functions appearing in the most general Lagrangian for the scalar-tensor theories, the Horndeski Lagrangian. In the present thesis, the Fisher matrix formalism is used to perform a forecast on the constraints that will be possible to make on the anisotropic stress η in the future, starting from the estimated uncertainties for the galaxy clustering and weak lensing measurements which will be performed by the European Space Agency Euclid mission, to be launched in 2020. Further, constraints coming from supernovae-Ia observations are considered. The forecast is performed for two cases in which (a) η is considered as depending from redshift only and (b) η is constant and equal to one, as in the ΛCDM model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Scilla rock avalanche occurred on 6 February 1783 along the coast of the Calabria region (southern Italy), close to the Messina Strait. It was triggered by a mainshock of the Terremoto delle Calabrie seismic sequence, and it induced a tsunami wave responsible for more than 1500 casualties along the neighboring Marina Grande beach. The main goal of this work is the application of semi-analtycal and numerical models to simulate this event. The first one is a MATLAB code expressly created for this work that solves the equations of motion for sliding particles on a two-dimensional surface through a fourth-order Runge-Kutta method. The second one is a code developed by the Tsunami Research Team of the Department of Physics and Astronomy (DIFA) of the Bologna University that describes a slide as a chain of blocks able to interact while sliding down over a slope and adopts a Lagrangian point of view. A wide description of landslide phenomena and in particular of landslides induced by earthquakes and with tsunamigenic potential is proposed in the first part of the work. Subsequently, the physical and mathematical background is presented; in particular, a detailed study on derivatives discratization is provided. Later on, a description of the dynamics of a point-mass sliding on a surface is proposed together with several applications of numerical and analytical models over ideal topographies. In the last part, the dynamics of points sliding on a surface and interacting with each other is proposed. Similarly, different application on an ideal topography are shown. Finally, the applications on the 1783 Scilla event are shown and discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gli odori rappresentano uno degli elementi di disturbo che la popolazione avverte maggiormente e, anche nel caso in cui non siano associati a sostanze tossiche, sono causa di conflitti e di intolleranza, sia nei confronti delle aziende che li diffondono nel territorio, sia nella scelta del sito di localizzazione di nuovi impianti. La valutazione del disturbo olfattivo e la sua regolamentazione (esistono linee guida, ma non una legislazione di riferimento) rappresentano aspetti caratterizzati da elevata complessità, dal momento che l’inquinamento olfattivo è strettamente associato alla percezione umana. Nella tesi vengono valutate le emissioni odorigene e le relative immissioni, dovute ad un comparto per la gestione integrata dei rifiuti. Per caratterizzare le emissioni sono stati prelevati dei campioni di aria presso le principali sorgenti individuate e quantificate utilizzando la tecnica dell’olfattometria dinamica. Una volta caratterizzate le sorgenti, i dati di emissione ottenuti dalla campagna di misura e dall’analisi olfattometrica sono stati utilizzati come dati di input del modello LAPMOD (LAgrangian Particle MODel). LAPMOD è stato implementato con un modulo specifico per la determinazione delle concentrazioni massime orarie che utilizza un peak-to-mean variabile nel tempo, a differenza di altri modelli che usano un valore costante per la determinazione. Dall'elaborazione dei dati è emerso che, utilizzando il modulo specifico per gli odori, le concentrazioni come 98° percentile riferite al giorno tipico hanno un andamento opposto rispetto all’uso di un peak-to-mean costante. Dal confronto della simulazione in cui le emissioni sono indipendenti dalla variazione della portata di odore in funzione della velocità del vento, con quella che invece simula tale dipendenza (nelle sorgenti che presentano paratie laterali e tettoia) è emerso che la simulazione che mitiga completamente l’effetto del vento è più coerente con la realtà.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Feedback from the most massive components of a young stellar cluster deeply affects the surrounding ISM driving an expanding over-pressured hot gas cavity in it. In spiral galaxies these structures may have sufficient energy to break the disk and eject large amount of material into the halo. The cycling of this gas, which eventually will fall back onto the disk, is known as galactic fountains. We aim at better understanding the dynamics of such fountain flow in a Galactic context, frame the problem in a more dynamic environment possibly learning about its connection and regulation to the local driving mechanism and understand its role as a metal diffusion channel. The interaction of the fountain with a hot corona is hereby analyzed, trying to understand the properties and evolution of the extraplanar material. We perform high resolution hydrodynamical simulations with the moving-mesh code AREPO to model the multi-phase ISM of a Milky Way type galaxy. A non-equilibrium chemical network is included to self consistently follow the evolution of the main coolants of the ISM. Spiral arm perturbations in the potential are considered so that large molecular gas structures are able to dynamically form here, self shielded from the interstellar radiation field. We model the effect of SN feedback from a new-born stellar cluster inside such a giant molecular cloud, as the driving force of the fountain. Passive Lagrangian tracer particles are used in conjunction to the SN energy deposition to model and study diffusion of freshly synthesized metals. We find that both interactions with hot coronal gas and local ISM properties and motions are equally important in shaping the fountain. We notice a bimodal morphology where most of the ejected gas is in a cold $10^4$ K clumpy state while the majority of the affected volume is occupied by a hot diffuse medium. While only about 20\% of the produced metals stay local, most of them quickly diffuse through this hot regime to great scales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We give a brief review of the Functional Renormalization method in quantum field theory, which is intrinsically non perturbative, in terms of both the Polchinski equation for the Wilsonian action and the Wetterich equation for the generator of the proper verteces. For the latter case we show a simple application for a theory with one real scalar field within the LPA and LPA' approximations. For the first case, instead, we give a covariant "Hamiltonian" version of the Polchinski equation which consists in doing a Legendre transform of the flow for the corresponding effective Lagrangian replacing arbitrary high order derivative of fields with momenta fields. This approach is suitable for studying new truncations in the derivative expansion. We apply this formulation for a theory with one real scalar field and, as a novel result, derive the flow equations for a theory with N real scalar fields with the O(N) internal symmetry. Within this new approach we analyze numerically the scaling solutions for N=1 in d=3 (critical Ising model), at the leading order in the derivative expansion with an infinite number of couplings, encoded in two functions V(phi) and Z(phi), obtaining an estimate for the quantum anomalous dimension with a 10% accuracy (confronting with Monte Carlo results).