6 resultados para Lagrangian bounds in optimization problems

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

I problemi di ottimizzazione di dimensione finita di larga scala spesso derivano dalla discretizzazione di problemi di dimensione infinita. È perciò possibile descrivere il problema di ottimizzazione su più livelli discreti. Lavorando su un livello più basso di quello del problema considerato, si possono calcolare soluzioni approssimate che saranno poi punti di partenza per il problema di ottimizzazione al livello più fine. I metodi multilivello, già ampiamente presenti in letteratura a partire dagli anni Novanta, sfruttano tale caratteristica dei problemi di ottimizzazione per migliorare le prestazioni dei metodi di ottimizzazione standard. L’obiettivo di questa tesi è quello di implementare una variante multilivello del metodo del gradiente (MGM) e di testarlo su due diversi campi: la risoluzione delle Equazioni alle Derivate Parziali la ricostruzione di immagini. In questo elaborato viene illustrata la teoria dello schema multilivello e presentato l’algoritmo di MGM utilizzato nei nostri esperimenti. Sono poi discusse le modalità di utilizzo di MGM per i due problemi sopra presentati. Per il problema PDE, i risultati ottenuti mostrano un ottimo comportamento di MGM rispetto alla implementazione classica ad un livello. I risultati ottenuti per il problema di ricostruzione di immagini, al contrario delle PDEs, evidenziano come MGM sia efficace solo in determinate condizioni.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combinatorial optimization problems are typically tackled by the branch-and-bound paradigm. We propose to learn a variable selection policy for branch-and-bound in mixed-integer linear programming, by imitation learning on a diversified variant of the strong branching expert rule. We encode states as bipartite graphs and parameterize the policy as a graph convolutional neural network. Experiments on a series of synthetic problems demonstrate that our approach produces policies that can improve upon expert-designed branching rules on large problems, and generalize to instances significantly larger than seen during training.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We address the problem of automotive cybersecurity from the point of view of Threat Analysis and Risk Assessment (TARA). The central question that motivates the thesis is the one about the acceptability of risk, which is vital in taking a decision about the implementation of cybersecurity solutions. For this purpose, we develop a quantitative framework in which we take in input the results of risk assessment and define measures of various facets of a possible risk response; we then exploit the natural presence of trade-offs (cost versus effectiveness) to formulate the problem as a multi-objective optimization. Finally, we develop a stochastic model of the future evolution of the risk factors, by means of Markov chains; we adapt the formulations of the optimization problems to this non-deterministic context. The thesis is the result of a collaboration with the Vehicle Electrification division of Marelli, in particular with the Cybersecurity team based in Bologna; this allowed us to consider a particular instance of the problem, deriving from a real TARA, in order to test both the deterministic and the stochastic framework in a real world application. The collaboration also explains why in the work we often assume the point of view of a tier-1 supplier; however, the analyses performed can be adapted to any other level of the supply chain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

My thesis falls within the framework of physics education and teaching of mathematics. The objective of this report was made possible by using geometrical (in mathematics) and qualitative (in physics) problems. We have prepared four (resp. three) open answer exercises for mathematics (resp. physics). The test batch has been selected across two different school phases: end of the middle school (third year, 8\textsuperscript{th} grade) and beginning of high school (second and third year, 10\textsuperscript{th} and 11\textsuperscript{th} grades respectively). High school students achieved the best results in almost every problem, but 10\textsuperscript{th} grade students got the best overall results. Moreover, a clear tendency to not even try qualitative problems resolution has emerged from the first collection of graphs, regardless of subject and grade. In order to improve students' problem-solving skills, it is worth to invest on vertical learning and spiral curricula. It would make sense to establish a stronger and clearer connection between physics and mathematical knowledge through an interdisciplinary approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combinatorial decision and optimization problems belong to numerous applications, such as logistics and scheduling, and can be solved with various approaches. Boolean Satisfiability and Constraint Programming solvers are some of the most used ones and their performance is significantly influenced by the model chosen to represent a given problem. This has led to the study of model reformulation methods, one of which is tabulation, that consists in rewriting the expression of a constraint in terms of a table constraint. To apply it, one should identify which constraints can help and which can hinder the solving process. So far this has been performed by hand, for example in MiniZinc, or automatically with manually designed heuristics, in Savile Row. Though, it has been shown that the performances of these heuristics differ across problems and solvers, in some cases helping and in others hindering the solving procedure. However, recent works in the field of combinatorial optimization have shown that Machine Learning (ML) can be increasingly useful in the model reformulation steps. This thesis aims to design a ML approach to identify the instances for which Savile Row’s heuristics should be activated. Additionally, it is possible that the heuristics miss some good tabulation opportunities, so we perform an exploratory analysis for the creation of a ML classifier able to predict whether or not a constraint should be tabulated. The results reached towards the first goal show that a random forest classifier leads to an increase in the performances of 4 different solvers. The experimental results in the second task show that a ML approach could improve the performance of a solver for some problem classes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The future hydrogen demand is expected to increase, both in existing industries (including upgrading of fossil fuels or ammonia production) and in new technologies, like fuel cells. Nowadays, hydrogen is obtained predominantly by steam reforming of methane, but it is well known that hydrocarbon based routes result in environmental problems and besides the market is dependent on the availability of this finite resource which is suffering of rapid depletion. Therefore, alternative processes using renewable sources like wind, solar energy and biomass, are now being considered for the production of hydrogen. One of those alternative methods is the so-called “steam-iron process” which consists in the reduction of a metal-oxide by hydrogen-containing feedstock, like ethanol for instance, and then the reduced material is reoxidized with water to produce “clean” hydrogen (water splitting). This kind of thermochemical cycles have been studied before but currently some important facts like the development of more active catalysts, the flexibility of the feedstock (including renewable bio-alcohols) and the fact that the purification of hydrogen could be avoided, have significantly increased the interest for this research topic. With the aim of increasing the understanding of the reactions that govern the steam-iron route to produce hydrogen, it is necessary to go into the molecular level. Spectroscopic methods are an important tool to extract information that could help in the development of more efficient materials and processes. In this research, ethanol was chosen as a reducing fuel and the main goal was to study its interaction with different catalysts having similar structure (spinels), to make a correlation with the composition and the mechanism of the anaerobic oxidation of the ethanol which is the first step of the steam-iron cycle. To accomplish this, diffuse reflectance spectroscopy (DRIFTS) was used to study the surface composition of the catalysts during the adsorption of ethanol and its transformation during the temperature program. Furthermore, mass spectrometry was used to monitor the desorbed products. The set of studied materials include Cu, Co and Ni ferrites which were also characterized by means of X-ray diffraction, surface area measurements, Raman spectroscopy, and temperature programmed reduction.