2 resultados para LOD

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obiettivo della tesi è analizzare e testare i principali approcci di Machine Learning applicabili in contesti semantici, partendo da algoritmi di Statistical Relational Learning, quali Relational Probability Trees, Relational Bayesian Classifiers e Relational Dependency Networks, per poi passare ad approcci basati su fattorizzazione tensori, in particolare CANDECOMP/PARAFAC, Tucker e RESCAL.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Questo lavoro di tesi si concentra sulle estensioni apportate a BEX (Bibliographic Explorer), una web app finalizzata alla navigazione di pubblicazioni scientifiche attraverso le loro citazioni. Il settore in cui si colloca è il Semantic Publishing, un nuovo ambito di ricerca derivato dall'applicazione delle tecnologie del Semantic Web allo Scholarly Publishing, che ha come scopo la pubblicazione di articoli accademici a cui vengono associati metadati semantici. BEX nasce all'interno del Semantic Lancet Project del Dipartimento di Informatica dell'Università di Bologna, il cui obiettivo è costruire un Linked Open Dataset di pubblicazioni accademiche, il Semantic Lancet Triplestore (SLT), e fornire strumenti per la navigazione ad alto livello e l'uso approfondito dei dati in esso contenuti. Gli scholarly Linked Open Data elaborati da BEX sono insiemi di triple RDF conformi alle ontologie SPAR. Originariamente BEX ha come backend il dataset SLT che contiene metadati relativi alle pubblicazioni del Journal Of Web Semantics di Elsevier. BEX offre viste avanzate tramite un'interfaccia interattiva e una buona user-experience. L'utente di BEX è principalmente il ricercatore universitario, che per compiere le sue attività quotidiane fa largo uso delle Digital Library (DL) e dei servizi che esse offrono. Dato il fermento dei ricercatori nel campo del Semantic Publishing e la veloce diffusione della pubblicazione di scholarly Linked Open Data è ragionevole pensare di ampliare e mantenere un progetto che possa provvedere al sense making di dati altrimenti interrogabili solo in modo diretto con queries SPARQL. Le principali integrazioni a BEX sono state fatte in termini di scalabilità e flessibilità: si è implementata la paginazione dei risultati di ricerca, l'indipendenza da SLT per poter gestire datasets diversi per struttura e volume, e la creazione di viste author centric tramite aggregazione di dati e comparazione tra autori.