2 resultados para LIGHT SCATTERING

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the past decade the study of superparamagnetic nanoparticles has been intensively developed for many biomedical applications such as magnetically assisted drug delivery, MRI contrast agents, cells separation and hyperthermia therapy. All of these applications require nanoparticles with high magnetization, equipped also with a suitable surface coating which has to be non-toxic and biocompatible. In this master thesis, the silica coating of commercially available magnetic nanoparticles was investigated. Silica is a versatile material with many intrinsic features, such as hydrophilicity, low toxicity, proper design and derivatization yields particularly stable colloids even in physiological conditions. The coating process was applied to commercial magnetite particles dispersed in an aqueous solution. The formation of silica coated magnetite nanoparticles was performed following two main strategies: the Stöber process, in which the silica coating of the nanoparticle was directly formed by hydrolysis and condensation of suitable precursor in water-alcoholic mixtures; and the reverse microemulsions method in which inverse micelles were used to confine the hydrolysis and condensation reactions that bring to the nanoparticles formation. Between these two methods, the reverse microemulsions one resulted the most versatile and reliable because of the high control level upon monodispersity, silica shell thickness and overall particle size. Moving from low to high concentration, within the microemulsion region a gradual shift from larger particles to smaller one was detected. By increasing the amount of silica precursor the silica shell can also be tuned. Fluorescent dyes have also been incorporated within the silica shell by linking with the silica matrix. The structure of studied nanoparticles was investigated by using transmission electron microscope (TEM) and dynamic light scattering (DLS). These techniques have been used to monitor the syntetic procedures and for the final characterization of silica coated and silica dye doped nanoparticles. Finally, field dependent magnetization measurements showed the magnetic properties of core-shell nanoparticles were preserved. Due to a very well defined structure that combines magnetic and luminescent properties together with the possibility of further functionalization, these multifunctional nanoparticles are potentially useful platforms in biomedical fields such as labeling and imaging.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poly-N-Isopropylacrylamide (PNIPAM) colloidal particles form crystal phases that show a thermosensitive behaviour and can be used as atomic model systems. This polymer has both hydrophilic and hydrophobic character and has interesting stimuli-responsive properties in aqueous solution, of which the most important is the temperature response. Above a certain temperature, called Lower Critical Solution Temperature (LCST), the system undergoes a volume phase transition (VPT). Above the LCST, the water is expelled from the polymer network and the swollen state at low temperature transforms into a shrunken state at high temperature. The thermoresponsive behaviour of PNIPAM can be influenced by pH and ionic strength, as well as by the presence of copolymers, such as acrylic acid. In a system formed both by particles of PNIPAM and PNIPAM doped with acrylic acid, one can control the size ratio of the two components by changing the temperature of the mixture, while keeping particle interactions relatively the same. It is therefore possible to obtain thermoresponsive colloidal crystal in which temperature changes induce defects whose formation processes and dynamics can be analysed in an optical microscope at a convenient spatial and temporal scale. The goal of this thesis project was to find the conditions in which such a system could be formed, by using characterization techniques such as Static Light Scattering, Dynamic Light Scattering and Confocal Laser Scanning Microscopy. Two PNIPAM-AAc systems were available, and after characterization it was possible to select a suitable one, on the basis of its low polydispersity and the lack of a VPT, regardless of the external conditions (system JPN_7). The synthesis of a PNIPAM system was attempted, with particles of dimensions matching the JPN_7 system and, unlike JPN_7, displaying a VPT, and one suitable candidate for the mixed system was finally found (system CB_5). The best conditions to obtain thermoresponsive crystal were selected, and the formation and healing of defects were investigated with CLSM temperature scans. The obtained results show that the approach is the correct one and that the present report could represent a useful start for future developments in defect analysis and defect dynamics studies.