5 resultados para LATENCY
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
PhEDEx, the CMS transfer management system, during the first LHC Run has moved about 150 PB and currently it is moving about 2.5 PB of data per week over the Worldwide LHC Computing Grid (WLGC). It was designed to complete each transfer required by users at the expense of the waiting time necessary for its completion. For this reason, after several years of operations, data regarding transfer latencies has been collected and stored into log files containing useful analyzable informations. Then, starting from the analysis of several typical CMS transfer workflows, a categorization of such latencies has been made with a focus on the different factors that contribute to the transfer completion time. The analysis presented in this thesis will provide the necessary information for equipping PhEDEx in the future with a set of new tools in order to proactively identify and fix any latency issues. PhEDEx, il sistema di gestione dei trasferimenti di CMS, durante il primo Run di LHC ha trasferito all’incirca 150 PB ed attualmente trasferisce circa 2.5 PB di dati alla settimana attraverso la Worldwide LHC Computing Grid (WLCG). Questo sistema è stato progettato per completare ogni trasferimento richiesto dall’utente a spese del tempo necessario per il suo completamento. Dopo svariati anni di operazioni con tale strumento, sono stati raccolti dati relativi alle latenze di trasferimento ed immagazzinati in log files contenenti informazioni utili per l’analisi. A questo punto, partendo dall’analisi di una ampia mole di trasferimenti in CMS, è stata effettuata una suddivisione di queste latenze ponendo particolare attenzione nei confronti dei fattori che contribuiscono al tempo di completamento del trasferimento. L’analisi presentata in questa tesi permetterà di equipaggiare PhEDEx con un insieme di utili strumenti in modo tale da identificare proattivamente queste latenze e adottare le opportune tattiche per minimizzare l’impatto sugli utenti finali.
Resumo:
The cybernetics revolution of the last years improved a lot our lives, having an immediate access to services and a huge amount of information over the Internet. Nowadays the user is increasingly asked to insert his sensitive information on the Internet, leaving its traces everywhere. But there are some categories of people that cannot risk to reveal their identities on the Internet. Even if born to protect U.S. intelligence communications online, nowadays Tor is the most famous low-latency network, that guarantees both anonymity and privacy of its users. The aim of this thesis project is to well understand how the Tor protocol works, not only studying its theory, but also implementing those concepts in practice, having a particular attention for security topics. In order to run a Tor private network, that emulates the real one, a virtual testing environment has been configured. This behavior allows to conduct experiments without putting at risk anonymity and privacy of real users. We used a Tor patch, that stores TLS and circuit keys, to be given as inputs to a Tor dissector for Wireshark, in order to obtain decrypted and decoded traffic. Observing clear traffic allowed us to well check the protocol outline and to have a proof of the format of each cell. Besides, these tools allowed to identify a traffic pattern, used to conduct a traffic correlation attack to passively deanonymize hidden service clients. The attacker, controlling two nodes of the Tor network, is able to link a request for a given hidden server to the client who did it, deanonymizing him. The robustness of the traffic pattern and the statistics, such as the true positive rate, and the false positive rate, of the attack are object of a potential future work.
Resumo:
Mobile devices are now capable of supporting a wide range of applications, many of which demand an ever increasing computational power. To this end, mobile cloud computing (MCC) has been proposed to address the limited computation power, memory, storage, and energy of such devices. An important challenge in MCC is to guarantee seamless discovery of services. To this end, this thesis proposes an architecture that provides user-transparent and low-latency service discovery, as well as automated service selection. Experimental results on a real cloud computing testbed demonstrated that the proposed work outperforms state of-the-art approaches by achieving extremely low discovery delay.
Resumo:
The 5th generation of mobile networking introduces the concept of “Network slicing”, the network will be “sliced” horizontally, each slice will be compliant with different requirements in terms of network parameters such as bandwidth, latency. This technology is built on logical instead of physical resources, relies on virtual network as main concept to retrieve a logical resource. The Network Function Virtualisation provides the concept of logical resources for a virtual network function, enabling the concept virtual network; it relies on the Software Defined Networking as main technology to realize the virtual network as resource, it also define the concept of virtual network infrastructure with all components needed to enable the network slicing requirements. SDN itself uses cloud computing technology to realize the virtual network infrastructure, NFV uses also the virtual computing resources to enable the deployment of virtual network function instead of having custom hardware and software for each network function. The key of network slicing is the differentiation of slice in terms of Quality of Services parameters, which relies on the possibility to enable QoS management in cloud computing environment. The QoS in cloud computing denotes level of performances, reliability and availability offered. QoS is fundamental for cloud users, who expect providers to deliver the advertised quality characteristics, and for cloud providers, who need to find the right tradeoff between QoS levels that has possible to offer and operational costs. While QoS properties has received constant attention before the advent of cloud computing, performance heterogeneity and resource isolation mechanisms of cloud platforms have significantly complicated QoS analysis and deploying, prediction, and assurance. This is prompting several researchers to investigate automated QoS management methods that can leverage the high programmability of hardware and software resources in the cloud.
Resumo:
Parkinson's disease (PD) is a neuro-degenerative disorder, the second most common after Alzheimer's disease. After diagnosis, treatments can help to relieve the symptoms, but there is no known cure for PD. PD is characterized by a combination of motor and no-motor dysfunctions. Among the motor symptoms there is the so called Freezing of Gait (FoG). The FoG is a phenomenon in PD patients in which the feet stock to the floor and is difficult for the patient to initiate movement. FoG is a severe problem, since it is associated with falls, anxiety, loss of mobility, accidents, mortality and it has substantial clinical and social consequences decreasing the quality of life in PD patients. Medicine can be very successful in controlling movements disorders and dealing with some of the PD symptoms. However, the relationship between medication and the development of FoG remains unclear. Several studies have demonstrated that visual or auditory rhythmical cuing allows PD patients to improve their motor abilities. Rhythmic auditory stimulation (RAS) was shown to be particularly effective at improving gait, specially with patients that manifest FoG. While RAS allows to reduce the time and the effects of FoGs occurrence in PD patients after the FoG is detected, it can not avoid the episode due to the latency of detection. An improvement of the system would be the prediction of the FoG. This thesis was developed following two main objectives: (1) the finding of specifics properties during pre FoG periods different from normal walking context and other walking events like turns and stops using the information provided by the inertial measurements units (IMUs) and (2) the formulation of a model for automatically detect the pre FoG patterns in order to completely avoid the upcoming freezing event in PD patients. The first part focuses on the analysis of different methods for feature extraction which might lead in the FoG occurrence.