6 resultados para Knowledge retrieval, Ontology, User information needs, User profiles, Information retrieval
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
This thesis develops AI methods as a contribution to computational musicology, an interdisciplinary field that studies music with computers. In systematic musicology a composition is defined as the combination of harmony, melody and rhythm. According to de La Borde, harmony alone "merits the name of composition". This thesis focuses on analysing the harmony from a computational perspective. We concentrate on symbolic music representation and address the problem of formally representing chord progressions in western music compositions. Informally, chords are sets of pitches played simultaneously, and chord progressions constitute the harmony of a composition. Our approach combines ML techniques with knowledge-based techniques. We design and implement the Modal Harmony ontology (MHO), using OWL. It formalises one of the most important theories in western music: the Modal Harmony Theory. We propose and experiment with different types of embedding methods to encode chords, inspired by NLP and adapted to the music domain, using both statistical (extensional) knowledge by relying on a huge dataset of chord annotations (ChoCo), intensional knowledge by relying on MHO and a combination of the two. The methods are evaluated on two musicologically relevant tasks: chord classification and music structure segmentation. The former is verified by comparing the results of the Odd One Out algorithm to the classification obtained with MHO. Good performances (accuracy: 0.86) are achieved. We feed a RNN for the latter, using our embeddings. Results show that the best performance (F1: 0.6) is achieved with embeddings that combine both approaches. Our method outpeforms the state of the art (F1 = 0.42) for symbolic music structure segmentation. It is worth noticing that embeddings based only on MHO almost equal the best performance (F1 = 0.58). We remark that those embeddings only require the ontology as an input as opposed to other approaches that rely on large datasets.
Resumo:
Artificial Intelligence is reshaping the field of fashion industry in different ways. E-commerce retailers exploit their data through AI to enhance their search engines, make outfit suggestions and forecast the success of a specific fashion product. However, it is a challenging endeavour as the data they possess is huge, complex and multi-modal. The most common way to search for fashion products online is by matching keywords with phrases in the product's description which are often cluttered, inadequate and differ across collections and sellers. A customer may also browse an online store's taxonomy, although this is time-consuming and doesn't guarantee relevant items. With the advent of Deep Learning architectures, particularly Vision-Language models, ad-hoc solutions have been proposed to model both the product image and description to solve this problems. However, the suggested solutions do not exploit effectively the semantic or syntactic information of these modalities, and the unique qualities and relations of clothing items. In this work of thesis, a novel approach is proposed to address this issues, which aims to model and process images and text descriptions as graphs in order to exploit the relations inside and between each modality and employs specific techniques to extract syntactic and semantic information. The results obtained show promising performances on different tasks when compared to the present state-of-the-art deep learning architectures.
Resumo:
Rappresentazione della conoscenza in banca di dati testuali non strutturati in lingua Italiana.
Resumo:
The central objective of research in Information Retrieval (IR) is to discover new techniques to retrieve relevant information in order to satisfy an Information Need. The Information Need is satisfied when relevant information can be provided to the user. In IR, relevance is a fundamental concept which has changed over time, from popular to personal, i.e., what was considered relevant before was information for the whole population, but what is considered relevant now is specific information for each user. Hence, there is a need to connect the behavior of the system to the condition of a particular person and his social context; thereby an interdisciplinary sector called Human-Centered Computing was born. For the modern search engine, the information extracted for the individual user is crucial. According to the Personalized Search (PS), two different techniques are necessary to personalize a search: contextualization (interconnected conditions that occur in an activity), and individualization (characteristics that distinguish an individual). This movement of focus to the individual's need undermines the rigid linearity of the classical model overtaken the ``berry picking'' model which explains that the terms change thanks to the informational feedback received from the search activity introducing the concept of evolution of search terms. The development of Information Foraging theory, which observed the correlations between animal foraging and human information foraging, also contributed to this transformation through attempts to optimize the cost-benefit ratio. This thesis arose from the need to satisfy human individuality when searching for information, and it develops a synergistic collaboration between the frontiers of technological innovation and the recent advances in IR. The search method developed exploits what is relevant for the user by changing radically the way in which an Information Need is expressed, because now it is expressed through the generation of the query and its own context. As a matter of fact the method was born under the pretense to improve the quality of search by rewriting the query based on the contexts automatically generated from a local knowledge base. Furthermore, the idea of optimizing each IR system has led to develop it as a middleware of interaction between the user and the IR system. Thereby the system has just two possible actions: rewriting the query, and reordering the result. Equivalent actions to the approach was described from the PS that generally exploits information derived from analysis of user behavior, while the proposed approach exploits knowledge provided by the user. The thesis went further to generate a novel method for an assessment procedure, according to the "Cranfield paradigm", in order to evaluate this type of IR systems. The results achieved are interesting considering both the effectiveness achieved and the innovative approach undertaken together with the several applications inspired using a local knowledge base.
Resumo:
The following research thesis is about a retrofit project made in Denmark, Copenhagen, and carried out on one of the buildings belonging to the Royal Danish Academy. The key assumption and base of the entire research process is that, up to now, the standard procedure in retrofit cases like this provides as comparative method between de facto and design, the use of Energy Simulation software. These programs generally divide the space into different thermal zones, assigning to each of them different levels of employment, activities, set-point temperatures set for cooling and heating analysis and so on, but always providing average and constant values, usually taken in the middle point of the single thermal zone. Therefore, the project and its research path stems from the attempt to investigate the potentialities of this kind of designing for retrofit process, as previously anticipated not antithetical but complementary to that classic energy-based retrofit, thus passing from the building scale, and all its thermal zones, to the users' scale, related to humans and microclimates. The main software used in this process is Autodesk Simulation CFD. The idea behind the project is that in certain situations, for example, it will not be necessary to add throughout insulation layers (previously parameterized and optimized with Design Builder), and that even in Winter conditions, due maybe to the users' activities, the increased level of clothing (clo) and the heat produced by equipments, thermal comfort could be achieved also in areas characterized by considerably lower MRT. After the analysis of the State of Art and its simulations, the project has still been supported by the tool itself, the CFD Software, in an iterative process aimed at achieving visible improvements in terms of MRT, on spaces with different needs and characteristics, both in Winter and Summer regimes.
Resumo:
Most of the existing open-source search engines, utilize keyword or tf-idf based techniques to find relevant documents and web pages relative to an input query. Although these methods, with the help of a page rank or knowledge graphs, proved to be effective in some cases, they often fail to retrieve relevant instances for more complicated queries that would require a semantic understanding to be exploited. In this Thesis, a self-supervised information retrieval system based on transformers is employed to build a semantic search engine over the library of Gruppo Maggioli company. Semantic search or search with meaning can refer to an understanding of the query, instead of simply finding words matches and, in general, it represents knowledge in a way suitable for retrieval. We chose to investigate a new self-supervised strategy to handle the training of unlabeled data based on the creation of pairs of ’artificial’ queries and the respective positive passages. We claim that by removing the reliance on labeled data, we may use the large volume of unlabeled material on the web without being limited to languages or domains where labeled data is abundant.