2 resultados para Knowledge Identification
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Longstanding taxonomic ambiguity and uncertainty exist in the identification of the common (M. mustelus) and blackspotted (M. punctulatus) smooth-hound in the Adriatic Sea. The lack of a clear and accurate method of morphological identification, leading to frequent misidentification, prevents the collation of species-specific landings and survey data for these fishes and hampers the delineation of the distribution ranges and stock boundaries of the species. In this context, adequate species-specific conservation and management strategies can not be applied without risks of population declining and local extinction. In this thesis work I investigated the molecular ecology of the two smooth-hound sharks which are abundant in the demersal trawl surveys carried out in the NC Adriatic Sea to monitor and assess the fishery resources. Ecological and evolutionary relationships were assessed by two molecular tests: a DNA barcoding analysis to improve species identification (and consequently the knowledge of their spatial ecology and taxonomy) and a hybridization assay based on the nuclear codominant marker ITS2 to evaluate reproductive interactions (hybridization or gene introgression). The smooth-hound sharks (N=208) were collected during the MEDITS 2008 and 2010 campaigns along the Italian and Croatian coasts of the Adriatic Sea, in the Sicilian Channel and in the Algerian fisheries. Since the identification based on morphological characters is not strongly reliable, I performed a molecular identification of the specimens producing for each one the cytochrome oxidase subunit 1 (COI) gene sequence (ca. 640 bp long) and compared them with reference sequences from different databases (GenBank and BOLD). From these molecular ID data I inferred the distribution of the two target species in the NC Adriatic Sea. In almost the totality of the MEDITS hauls I found no evidence of species sympatry. The data collected during the MEDITS survey showed an almost different distribution of M. mustelus (confined along the Italian coasts) and M. punctulatus (confined along the Croatian coasts); just one sample (Gulf of Venice, where probably the ranges of the species overlap) was found to have catches of both the species. Despite these data results suggested no interaction occurred between my two target species at least during the summertime (the period in which MEDITS survey is carried out), I still wanted to know if there were inter-species reproductive interactions so I developed a simple molecular genetic method to detect hybridization. This method is based on DNA sequence polymorphism among species in the nuclear ribosomal Internal Transcribed Spacer 2 locus (ITS2). Its application to the 208 specimens collected raised important questions regarding the ecology of this two species in the Adriatic Sea. In fact results showed signs of hybridization and/or gene introgression in two sharks collected during the trawl survey of 2008 and one collected during the 2010 one along the Italian and Croatian coasts. In the case that it will be confirmed the hybrid nature of these individuals, a spatiotemporal overlapping of the mating behaviour and ecology must occur. At the spatial level, the northern part of the Adriatic Sea (an area where the two species occur with high frequency of immature individuals) could likely play the role of a common nursery area for both species.
Resumo:
In the recent decade, the request for structural health monitoring expertise increased exponentially in the United States. The aging issues that most of the transportation structures are experiencing can put in serious jeopardy the economic system of a region as well as of a country. At the same time, the monitoring of structures is a central topic of discussion in Europe, where the preservation of historical buildings has been addressed over the last four centuries. More recently, various concerns arose about security performance of civil structures after tragic events such the 9/11 or the 2011 Japan earthquake: engineers looks for a design able to resist exceptional loadings due to earthquakes, hurricanes and terrorist attacks. After events of such a kind, the assessment of the remaining life of the structure is at least as important as the initial performance design. Consequently, it appears very clear that the introduction of reliable and accessible damage assessment techniques is crucial for the localization of issues and for a correct and immediate rehabilitation. The System Identification is a branch of the more general Control Theory. In Civil Engineering, this field addresses the techniques needed to find mechanical characteristics as the stiffness or the mass starting from the signals captured by sensors. The objective of the Dynamic Structural Identification (DSI) is to define, starting from experimental measurements, the modal fundamental parameters of a generic structure in order to characterize, via a mathematical model, the dynamic behavior. The knowledge of these parameters is helpful in the Model Updating procedure, that permits to define corrected theoretical models through experimental validation. The main aim of this technique is to minimize the differences between the theoretical model results and in situ measurements of dynamic data. Therefore, the new model becomes a very effective control practice when it comes to rehabilitation of structures or damage assessment. The instrumentation of a whole structure is an unfeasible procedure sometimes because of the high cost involved or, sometimes, because it’s not possible to physically reach each point of the structure. Therefore, numerous scholars have been trying to address this problem. In general two are the main involved methods. Since the limited number of sensors, in a first case, it’s possible to gather time histories only for some locations, then to move the instruments to another location and replay the procedure. Otherwise, if the number of sensors is enough and the structure does not present a complicate geometry, it’s usually sufficient to detect only the principal first modes. This two problems are well presented in the works of Balsamo [1] for the application to a simple system and Jun [2] for the analysis of system with a limited number of sensors. Once the system identification has been carried, it is possible to access the actual system characteristics. A frequent practice is to create an updated FEM model and assess whether the structure fulfills or not the requested functions. Once again the objective of this work is to present a general methodology to analyze big structure using a limited number of instrumentation and at the same time, obtaining the most information about an identified structure without recalling methodologies of difficult interpretation. A general framework of the state space identification procedure via OKID/ERA algorithm is developed and implemented in Matlab. Then, some simple examples are proposed to highlight the principal characteristics and advantage of this methodology. A new algebraic manipulation for a prolific use of substructuring results is developed and implemented.