3 resultados para Knee Arthroplasty

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this thesis was the study of the cement-bone interface in the tibial component of a cemented total knee prosthesis. One of the things you can see in specimens after in vivo service is that resorption of bone occurs in the interdigitated region between bone and cement. A stress shielding effect was investigated as a cause to explain bone resorption. Stress shielding occurs when bone is loaded less than physiological and therefore it starts remodeling according to the new loading conditions. µCT images were used to obtain 3D models of the bone and cement structure and a Finite Element Analysis was used to simulate different kind of loads. Resorption was also simulated by performing erosion operations in the interdigitated bone region. Finally, 4 models were simulated: bone (trabecular), bone with cement, and two models of bone with cement after progressive erosions of the bone. Compression, tension and shear test were simulated for each model in displacement-control until 2% of strain. The results show how the principal strain and Von Mises stress decrease after adding the cement on the structure and after the erosion operations. These results show that a stress shielding effect does occur and rises after resorption starts.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Total knee arthroplasty (TKA) has revolutionized the life of millions of patients and it is the most efficient treatment in cases of osteoarthritis. The increase in life expectancy has lowered the average age of the patient, which requires a more enduring and performing prosthesis. To improve the design of implants and satisfying the patient's needs, a deep understanding of the knee Biomechanics is needed. To overcome the uncertainties of numerical models, recently instrumented knee prostheses are spreading. The aim of the thesis was to design and manifacture a new prototype of instrumented implant, able to measure kinetics and kinematics (in terms of medial and lateral forces and patellofemoral forces) of different interchangeable designs of prosthesis during experiments tests within a research laboratory, on robotic knee simulator. Unlike previous prototypes it was not aimed for industrial applications, but purely focusing on research. After a careful study of the literature, and a preliminary analytic study, the device was created modifying the structure of a commercial prosthesis and transforming it in a load cell. For monitoring the kinematics of the femoral component a three-layers, piezoelettric position sensor was manifactured using a Velostat foil. This sensor has responded well to pilot test. Once completed, such device can be used to validate existing numerical models of the knee and of TKA and create new ones, more accurate.It can lead to refinement of surgical techniques, to enhancement of prosthetic designs and, once validated, and if properly modified, it can be used also intraoperatively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The new knee test rig developed in University of Bologna used pneumatic cylinder as actuator system. Specific characterization and modelling about the pneumatic cylinder and the related devices are needed in better controlling the test rig. In this thesis, an experimental environment for the related device is set up with data acquisition system using Real-time Windows Target, Simulink, MatLab. Based on the experimental data, a fitted model for the pneumatic cylinder friction is found.