2 resultados para Karakorum and Kunlun Mt .
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Yellowfin tuna (Thunnus albacares, YFT, Bonnaterre 1788) is one of the most important market tuna species in the world. The high mortality of juveniles is in part caused by their bycatch. Indeed, if unregulated, it could permanently destabilize stocks health. For this reason investigating and better knowing the stock boundaries represent a crucial concern. Aim of this thesis was to preliminary investigate the YFT population structure within and between Atlantic and Pacific Oceans through the analysis of genetic variation at eight microsatellite loci and assess the occurrence of barriers to the gene flow between Oceans. For this propouse we collected 4 geographical samples coming from Atlantic and Pacific Ocean and selected a panel of 8 microsatellites loci developped by Antoni et al., (2014). Samples 71-2-Y and 77-2-Y, came from rispectively west central pacific ocean (WCPO) and east central pacific ocean (ECPO), instead samples 41-1-Y and 34-2-Y derive from west central atlantic ocean (WCAO) and east central atlantic ocean (ECAO). Total 160 specimens were analyzed (40 per sample) and were carried out several genetic information as allele frequencies, allele number, allelic richness, HWE (using He and Ho) and pairwise Fst genetic distance. Results obtained, may support the panmictic theory of this species, only one of pairwise Fst obtained is statistically significant (Fst= 0.00927; pV= 0.00218) between 41-1-Y and 71-2-Y samples. Results suggest low genetic differentiation and consequent high level of gene flow between Atlantic and Pacific populations. Furthermore, we performed an analysis of molecular taxonomy through the use of ATCO (the flaking region between ATPse6 and cytochrome oxidase subunit III genes mt DNA, to discriminate within the gener Thunnus two of the related species (Yellofin and bigeye tuna) according with their difficult recognition at certain size (<40 cm). ATCO analysis in this thesis, has provided strong discriminate evidence between the target species proving to be one of the most reliable genetic tools capable to indagate within the genus Thunnus. Thus, our study has provided useful information for possible use of this protocol for conservation plans and management of this fish stocks.
Resumo:
The aim of this essay, which focuses on patent translation, is to compare the use of Computer-Assisted Translation (CAT) and Machine Translation (MT). During my curricular internship at a specialized-translation agency called Centro Traduzioni Imolese, I was able to practice patent translation thanks to CAT tools like SDL Trados Studio, something I have never studied at university in Forlì. Nowadays, however, Machine Translation is widely used in patent translation as well, due to the vast number of technical terms and their repetitiveness in patents, so the machine can translate automatically and rapidly all repeated terms with the same word, thanks to the use of corpora and translation memories linked to the patent field. In the first chapter I will give a definition of what a patent is, and I will introduce the concept of patent literature; afterwards, I will illustrate the differences between Computer-Assisted Translation and Machine Translation used in patent translation. In the second chapter I will translate two portions of patent 102019000018530, via the Matecat online application, translating the first part with CAT and the second part with MT, then doing the same for the second portion selected from the patent. Finally, in the third chapter, I will analyse the two translations, comparing the results in order to discover which is the more efficient method for translating patents.