19 resultados para Jordan tensor algebra
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Il modello ΛCDM è il modello cosmologico più semplice, ma finora più efficace, per descrivere l'evoluzione dell'universo. Esso si basa sulla teoria della Relatività Generale di Einstein e fornisce una spiegazione dell'espansione accelerata dell'universo introducendo la costante cosmologica Λ, che rappresenta il contributo della cosiddetta energia oscura, un'entità di cui ben poco si sa con certezza. Sono stati tuttavia proposti modelli teorici alternativi che descrivono gli effetti di questa quantità misteriosa, introducendo ad esempio gradi di libertà aggiuntivi, come nella teoria di Horndeski. L'obiettivo principale di questa testi è quello di studiare questi modelli tramite il tensor computer algebra xAct. In particolare, il nostro scopo sarà quello di implementare una procedura universale che permette di derivare, a partire dall'azione, le equazioni del moto e l'evoluzione temporale di qualunque modello generico.
Resumo:
In questa tesi ci si propone lo studio dell'anello delle matrici quadrate di ordine n, su un campo, per arrivare a dimostrare che ha solo ideali banali pur non essendo un campo. Allo scopo si introducono le operazioni elementari e il procedimento di traduzione di tali operazioni con opportune moltiplicazioni per matrici dette elementari. Si considera inoltre il gruppo generale lineare arrivando a dimostrare che un particolare sottoinsieme delle matrici elementari è un generatore di tale gruppo.
Resumo:
We have extended the Boltzmann code CLASS and studied a specific scalar tensor dark energy model: Induced Gravity
Resumo:
General Relativity is one of the greatest scientific achievementes of the 20th century along with quantum theory. These two theories are extremely beautiful and they are well verified by experiments, but they are apparently incompatible. Hints towards understanding these problems can be derived studying Black Holes, some the most puzzling solutions of General Relativity. The main topic of this Master Thesis is the study of Black Holes, in particular the Physics of Hawking Radiation. After a short review of General Relativity, I study in detail the Schwarzschild solution with particular emphasis on the coordinates systems used and the mathematical proof of the classical laws of Black Hole "Thermodynamics". Then I introduce the theory of Quantum Fields in Curved Spacetime, from Bogolubov transformations to the Schwinger-De Witt expansion, useful for the renormalization of the stress energy tensor. After that I introduce a 2D model of gravitational collapse to study the Hawking radiation phenomenon. Particular emphasis is given to the analysis of the quantum states, from correlations to the physical implication of this quantum effect (e.g. Information Paradox, Black Hole Thermodynamics). Then I introduce the renormalized stress energy tensor. Using the Schwinger-De Witt expansion I renormalize this object and I compute it analytically in the various quantum states of interest. Moreover, I study the correlations between these objects. They are interesting because they are linked to the Hawking radiation experimental search in acoustic Black Hole models. In particular I find that there is a characteristic peak in correlations between points inside and outside the Black Hole region, which correpsonds to entangled excitations inside and outside the Black Hole. These peaks hopefully will be measurable soon in supersonic BEC.
Resumo:
Nowadays, more and more data is collected in large amounts, such that the need of studying it both efficiently and profitably is arising; we want to acheive new and significant informations that weren't known before the analysis. At this time many graph mining algorithms have been developed, but an algebra that could systematically define how to generalize such operations is missing. In order to propel the development of a such automatic analysis of an algebra, We propose for the first time (to the best of my knowledge) some primitive operators that may be the prelude to the systematical definition of a hypergraph algebra in this regard.
Machine Learning applicato al Web Semantico: Statistical Relational Learning vs Tensor Factorization
Resumo:
Obiettivo della tesi è analizzare e testare i principali approcci di Machine Learning applicabili in contesti semantici, partendo da algoritmi di Statistical Relational Learning, quali Relational Probability Trees, Relational Bayesian Classifiers e Relational Dependency Networks, per poi passare ad approcci basati su fattorizzazione tensori, in particolare CANDECOMP/PARAFAC, Tucker e RESCAL.
Resumo:
Nella tesi viene fornita una costruzione dell'algebra esterna di un K-spazio vettoriale, alcune conseguenze principali come la derivazione in maniera traspente del determinante di e alcune sue proprietà e l'introduzione del concetto di Grassmanniana.
Resumo:
The first chapter of this work has the aim to provide a brief overview of the history of our Universe, in the context of string theory and considering inflation as its possible application to cosmological problems. We then discuss type IIB string compactifications, introducing the study of the inflaton, a scalar field candidated to describe the inflation theory. The Large Volume Scenario (LVS) is studied in the second chapter paying particular attention to the stabilisation of the Kähler moduli which are four-dimensional gravitationally coupled scalar fields which parameterise the size of the extra dimensions. Moduli stabilisation is the process through which these particles acquire a mass and can become promising inflaton candidates. The third chapter is devoted to the study of Fibre Inflation which is an interesting inflationary model derived within the context of LVS compactifications. The fourth chapter tries to extend the zone of slow-roll of the scalar potential by taking larger values of the field φ. Everything is done with the purpose of studying in detail deviations of the cosmological observables, which can better reproduce current experimental data. Finally, we present a slight modification of Fibre Inflation based on a different compactification manifold. This new model produces larger tensor modes with a spectral index in good agreement with the date released in February 2015 by the Planck satellite.
Resumo:
This thesis is dedicated to the Tits-Kantor-Koecher (TKK) construction which establishes a bijective correspondence between unital Jordan algebras and shortly graded Lie algebras with Z-grading induced by an sl_2-triple. It is based on the observation that if g is a Lie algebra with a short Z-grading and f lies in g_1, then the formula ab=[[a,f],b] defines a structure of a Jordan algebra on g_{-1}. The TKK construction has been extended to Jordan triple systems and, more recently, to the so-called Kantor triple systems. These generalizations are studied in the thesis.
Resumo:
Una curva di Jordan è una curva continua nel piano, semplice e chiusa. Lo scopo della tesi è presentare tre teoremi riguardanti le curve di Jordan. Il teorema dei quattro vertici afferma che ogni curva di Jordan regolare di classe C^2 ha almeno quattro punti in cui la curvatura orientata ha un massimo o un minimo locali. Il teorema della curva di Jordan asserisce che una curva di Jordan divide il piano esattamente in due parti, l'interno e l'esterno della curva. Secondo il teorema di Schönflies, la chiusura dell'interno di una curva di Jordan è omeomorfa a un disco chiuso.