4 resultados para Iron-polyimine complexes

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research performed in the framework of this Master Thesis has been directly inspired by the recent work of an organometallic research group led by Professor Maria Cristina Cassani on a topic related to the structures, dynamics and catalytic activity of N-heterocyclic carbene-amide rhodium(I) complexes1. A series of [BocNHCH2CH2ImR]X (R = Me, X = I, 1a’; R = Bz, X = Br, 1b’; R = trityl, X = Cl, 1c’) amide-functionalized imidazolium salts bearing increasingly bulky N-alkyl substituents were synthetized and characterized. Subsequently, these organic precursors were employed in the synthesis of silver(I) complexes as intermediate compounds on a way to rhodium(I) complexes [Rh(NBD)X(NHC)] (NHC = 1-(2-NHBoc-ethyl)-3-R-imidazolin-2-ylidene; X = Cl, R = Me (3a’), R = Bz (3b’), R = trityl (3c’); X = I, R = Me (4a’)). VT NMR studies of these complexes revealed a restricted rotation barriers about the metal-carbene bond. However, while the rotation barriers calculated for the complexes in which R = Me, Bz (3a’,b’ and 4a) matched the experimental values, this was not true in the trityl case 3c’, where the experimental value was very similar to that obtained for compound 3b’ and much smaller with respect to the calculated one. In addition, the energy barrier derived for 3c’ from line shape simulation showed a strong dependence on the temperature, while the barriers measured for 3a’,b’ did not show this effect. In view of these results and in order to establish the reasons for the previously found inconsistency between calculated and experimental thermodynamic data, the first objective of this master thesis was the preparation of a series of rhodium(I) complexes [Rh(NBD)X(NHC)] (NHC = 1-benzyl-3-R-imidazolin-2-ylidene; X = Cl, R = Me, Bz, trityl, tBu), containing the benzyl substituent as a chiral probe, followed by full characterization. The second objective of this work was to investigate the catalytic activity of the new rhodium compounds in the hydrosilylation of terminal alkynes for comparison purposes with the reported complexes. Another purpose of this work was to employ the prepared N-heterocyclic ligands in the synthesis of iron(II)-NHC complexes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Chemically Modified Electrodes (CME) are widely used in electroanalytical chemistry as chemical sensors. The interest in the covalent anchoring of a redox mediator on the electrode surface is increasing, because it allows the sensibility and the selectivity of this kind of systems to improve. My work is situated in this field of research and involves the synthesis of new Iron(0) complexes that contain cyclopentadienone, N-heterocyclic carbene (NHC) and carbonyl ancillary ligands. These complexes have shown electrochemical properties similar to those of ferrocene (organometallic compound widely used as electrochemical sensor). These complexes have been properly functionalized with a EDOT group in the NHC ligand side chain that it was after used for the realization of Electrochemically Modified PEDOT thanks to copolymerization reaction between the functionalized complex and the EDOT in different amounts. All the synthetic steps were assisted by suitable characterizations (NMR, IR, ESI-MS, cyclic voltammetry and X-ray for the monomeric compound as imidazolium salt and NHC functionalized complexes; cyclic voltammetry, IR e SEM for the copolymers). The properties of the polymer as a selective sensor was preliminarily investigated for dopamine and 2-propanol.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aim of the present work of thesis is to synthesize new non-noble metal based complexes to be employ in redox reactions by a metal-ligand cooperative mechanism. The need of replacing toxic and expensive precious metal complexes with more available and benign metals, has led to the development of new compounds based on cobalt and iron, which are the metals investigated in this study. A carbonyl-tetrahydroborato-bis[(2-diisopropylphosphino)ethyl]amine-cobalt complex bearing a PNP-type ligand is synthesized by a three-step route. Optimization attempt of reaction route were assessed in order to lowering reaction times and solvent waste. New cobalt complex has been tested in esters hydrogenation as well as in acceptorless dehydrogenative coupling of ethanol. Other varieties of substrates were also tested in order to evaluate any possible applications. Concerning iron complex, dicarbonyl-(η4-3,4-bis(4-methoxyphenyl)-2,5-diphenylcyclopenta-2,4-dienone)(1,3-dimethyl-ilidene)iron is synthesized by a three steps route, involving transmetallation of a silver complex, derived from an imidazolium salt, to iron complex. In order to avoid solvent waste, optimization is assessed. Studies were performed to assess activity of triscarbonyl iron precursor toward imidazolium salt and silver complexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Next to conventional solar panels that harvest direct sunlight, p-type dye-sensitized solar cells (DSSCs) have been developed, which are able to harvest diffuse sunlight. Due to unwanted charge recombination events p-type DSSCs exhibit low power conversion efficiencies (PCEs). Previous research has shown that dye-redox mediator (RM) interactions can prevent these recombination events, resulting in higher PCEs. It is unknown how the nature of dye-RM interactions affects the PCEs of pseudorotaxane-based solar cells. In this research this correlation is investigated by comparing one macrocycle, the 3-NDI, in combination with the three dyes that contains a recognition sites. 2D-DOSY-NMR experiments have been conducted to evaluate the diffusion constants (LogD) of the three couple. The research project has been stopped due to the coronavirus pandemic. The continuation of this thesis would have been to synthesize a dye on the basis of the data obtained from the diffusion tests and attempt the construction of a solar cell to then evaluate its effectiveness. During my training period I synthetized new Fe(0) cyclopentadienone compounds bearing a N-Heterocyclic Carbene ligand. The aim of the thesis was to achieve water solubility by modifications of the cyclopentadienone ligand. These new complexes have been modified using a sulfonation reaction, replacing an hydroxyl with a sulfate group, on the alkyl backbone of the cyclopentadienone ligand. All the complexes were characterized with IR, ESI-MS and NMR spectroscopy, and a new Fe(0) cyclopentadienone complex, involved as an intermediate, was obtained as a single crystal and was characterized also with X-Ray spectroscopy.