4 resultados para Ionic bonds
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Sudden cardiac death due to ventricular arrhythmia is one of the leading causes of mortality in the world. In the last decades, it has proven that anti-arrhythmic drugs, which prolong the refractory period by means of prolongation of the cardiac action potential duration (APD), play a good role in preventing of relevant human arrhythmias. However, it has long been observed that the “class III antiarrhythmic effect” diminish at faster heart rates and that this phenomenon represent a big weakness, since it is the precise situation when arrhythmias are most prone to occur. It is well known that mathematical modeling is a useful tool for investigating cardiac cell behavior. In the last 60 years, a multitude of cardiac models has been created; from the pioneering work of Hodgkin and Huxley (1952), who first described the ionic currents of the squid giant axon quantitatively, mathematical modeling has made great strides. The O’Hara model, that I employed in this research work, is one of the modern computational models of ventricular myocyte, a new generation began in 1991 with ventricular cell model by Noble et al. Successful of these models is that you can generate novel predictions, suggest experiments and provide a quantitative understanding of underlying mechanism. Obviously, the drawback is that they remain simple models, they don’t represent the real system. The overall goal of this research is to give an additional tool, through mathematical modeling, to understand the behavior of the main ionic currents involved during the action potential (AP), especially underlining the differences between slower and faster heart rates. In particular to evaluate the rate-dependence role on the action potential duration, to implement a new method for interpreting ionic currents behavior after a perturbation effect and to verify the validity of the work proposed by Antonio Zaza using an injected current as a perturbing effect.
Resumo:
Ionic Liquids (ILs) constituted by organic cations and inorganic anions are particular salts with a melting point below 100°C. Their physical properties such as melting point and solubility can be tuned by altering the combination of their anions and cations. In the last years the interest in ILs has been centered mostly on their possible use as “green” alternatives to the traditional volatile organic solvents (VOCs) thanks to their low vapour pressure and the efficient ability in catalyst immobilization. In this regard, the subject of the present thesis is the study of the oxodiperoxomolybdenum catalyzed epoxidation of olefins in ILs media with hydrogen peroxide as the oxidant. In particular N-functionalized imidazolium salts, such as 1-(2-t-Butoxycarbonylamino-ethyl)-3-methylimidazolium (1), were synthesized with different counterions [I]-, [PF6]-, [NO3]-, [NTf2]- and [ClO4]– and tested as reaction solvents. The counterion exchange with [Cl]-, [NTf2]- and [NO3]- was also performed in unfuctionalized imidazolium salts such as 3-butyl-1-methylimidazol-3-ium (3). All the prepared ILs were tested in catalytic epoxidation of olefins exploiting oxodiperoxomolybdenum complexes [MoO(O2)2(C4H6N2)2] (4) and [MoO(O2)2(C5H8N2)2] (5) as catalysts. The IL 3[NTf2] and the catalysts 5 give rise to the best results leading to the selective formation of the epoxide of cis-cyclooctene avoiding hydrolysis side reaction. A preliminary study on the synthesis of novel NHC oxodiperoxomolybdenum complexes starting from imidazolium salts was also developed.
Resumo:
Nel presente lavoro di tesi magistrale sono stati depositati e caratterizzati sottili film di ossido di alluminio, Al2O3, (di spessore compreso tra 3-30 nm) su un substrato di FZ-Si drogato p. La deposizione è avvenuta mediante plasma ALD (Atomic Layer Depostion). La tecnica spettroscopica EPR (Electron Paramagnetic Resonance) è stata utilizzata per studiare l’interfaccia Si/Al2O3 con lo scopo di scoprire l’origine della formazione di densità di carica negativa Qf all’interfaccia: tale carica negativa induce una passivazione per effetto di campo ed è quindi la ragione per cui il dielettrico Al2O3 risulta essere un ottimo materiale passivante. Si è deciso di variare alcuni parametri, come lo spessore dello strato di Al2O3, lo spessore dello strato intermedio di ossido di silicio, depositato mediante ossidazione termica (dry thermal oxidation), e la superficie del substrato di silicio. Sono stati realizzati cinque differenti gruppi di campioni: per ciascuno di essi sono state impiegate varie tecniche di caratterizzazione, come la QSSPC (Quasi Steady State Photoconuctance) e la tecnica di spettroscopia ottica SE (spettroscopic ellipsometry). Per ogni gruppo sono stati riportati gli spettri EPR ottenuti ed i rispettivi fit, da cui è stato possibile risalire ai fattori giromagnetici di spin g, riportati in tabelle con le loro possibili attribuzioni. E’ stato dimostrato che la presenza di uno strato di ossido di silicio tra il substrato di silicio e lo strato di ossido di alluminio risulta essere fondamentale per la formazione di densità di carica negativa all’interfaccia: aumentando lo spessore dello strato di SiOx (nel range 1-30 nm) si assiste ad una diminuzione di carica negativa Qf. Analizzando gli spettri EPR, è stato possibile concludere che all’interfaccia Si/Al2O3 sono presenti difetti caratteristici dell’interfaccia Si/SiOx. Le nostre osservazioni, dunque, sono coerenti con la formazione di uno strato di ossido di silicio tra Si e Al2O3.
Resumo:
This thesis investigates the synthesis of polymeric ionic liquid [(poly-acryloyloxy)6C6C1im][NTf2], by free radical polymerization of acryloyl imidazolium-base ionic liquid monomer [(acryloyloxy)6C6C1im][NTf2]. Moreover, the smartest synthetic route to obtain this monomer was investigated. Two different synthesis were compared. The first one started from the preparation of the monomer 6-chlorohexyl acrylate followed by substitution and metathesis to reach ionic liquid monomer. The second one started from synthesis of the ionic liquid [(HO)6C6C1im]Cl followed by metathesis and esterification in order to get ionic liquid monomer [(acryloyloxy)6C6C1im][NTf2].