16 resultados para Intrusion Detection, Computer Security, Misuse

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il rilevamento di intrusioni nel contesto delle pratiche di Network Security Monitoring è il processo attraverso cui, passando per la raccolta e l'analisi di dati prodotti da una o più fonti di varia natura, (p.e. copie del traffico di rete, copie dei log degli applicativi/servizi, etc..) vengono identificati, correlati e analizzati eventi di sicurezza con l'obiettivo di rilevare potenziali tenativi di compromissione al fine di proteggere l'asset tecnologico all'interno di una data infrastruttura di rete. Questo processo è il prodotto di una combinazione di hardware, software e fattore umano. Spetta a quest'ultimo nello specifico il compito più arduo, ovvero quello di restare al passo con una realtà in continua crescita ed estremamente dinamica: il crimine informatico. Spetta all'analista filtrare e analizzare le informazioni raccolte in merito per contestualizzarle successivamente all'interno della realta che intende proteggere, con il fine ultimo di arricchire e perfezionare le logiche di rilevamento implementate sui sistemi utilizzati. È necessario comprendere come il mantenimento e l'aggiornamento di questi sistemi sia un'attività che segue l'evolversi delle tecnologie e delle strategie di attacco. Un suo svolgimento efficacie ed efficiente risulta di primaria importanza per consentire agli analisti di focalizzare le proprie risorse sulle attività di investigazione di eventi di sicurezza, ricerca e aggiornamento delle logiche di rilevamento, minimizzando quelle ripetitive, "time consuming", e potenzialmente automatizzabili. Questa tesi ha come obiettivo quello di presentare un possibile approccio ad una gestione automatizzata e centralizzata di sistemi per il rilevamento delle intrusioni, ponendo particolare attenzione alle tecnologie IDS presenti sul panorama open source oltre a rapportare tra loro gli aspetti di scalabilità e personalizzazione che ci si trova ad affrontare quando la gestione viene estesa ad infrastrutture di rete eterogenee e distribuite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il termine cloud ha origine dal mondo delle telecomunicazioni quando i provider iniziarono ad utilizzare servizi basati su reti virtuali private (VPN) per la comunicazione dei dati. Il cloud computing ha a che fare con la computazione, il software, l’accesso ai dati e servizi di memorizzazione in modo tale che l’utente finale non abbia idea della posizione fisica dei dati e la configurazione del sistema in cui risiedono. Il cloud computing è un recente trend nel mondo IT che muove la computazione e i dati lontano dai desktop e dai pc portatili portandoli in larghi data centers. La definizione di cloud computing data dal NIST dice che il cloud computing è un modello che permette accesso di rete on-demand a un pool condiviso di risorse computazionali che può essere rapidamente utilizzato e rilasciato con sforzo di gestione ed interazione con il provider del servizio minimi. Con la proliferazione a larga scala di Internet nel mondo le applicazioni ora possono essere distribuite come servizi tramite Internet; come risultato, i costi complessivi di questi servizi vengono abbattuti. L’obbiettivo principale del cloud computing è utilizzare meglio risorse distribuite, combinarle assieme per raggiungere un throughput più elevato e risolvere problemi di computazione su larga scala. Le aziende che si appoggiano ai servizi cloud risparmiano su costi di infrastruttura e mantenimento di risorse computazionali poichè trasferiscono questo aspetto al provider; in questo modo le aziende si possono occupare esclusivamente del business di loro interesse. Mano a mano che il cloud computing diventa più popolare, vengono esposte preoccupazioni riguardo i problemi di sicurezza introdotti con l’utilizzo di questo nuovo modello. Le caratteristiche di questo nuovo modello di deployment differiscono ampiamente da quelle delle architetture tradizionali, e i meccanismi di sicurezza tradizionali risultano inefficienti o inutili. Il cloud computing offre molti benefici ma è anche più vulnerabile a minacce. Ci sono molte sfide e rischi nel cloud computing che aumentano la minaccia della compromissione dei dati. Queste preoccupazioni rendono le aziende restie dall’adoperare soluzioni di cloud computing, rallentandone la diffusione. Negli anni recenti molti sforzi sono andati nella ricerca sulla sicurezza degli ambienti cloud, sulla classificazione delle minacce e sull’analisi di rischio; purtroppo i problemi del cloud sono di vario livello e non esiste una soluzione univoca. Dopo aver presentato una breve introduzione sul cloud computing in generale, l’obiettivo di questo elaborato è quello di fornire una panoramica sulle vulnerabilità principali del modello cloud in base alle sue caratteristiche, per poi effettuare una analisi di rischio dal punto di vista del cliente riguardo l’utilizzo del cloud. In questo modo valutando i rischi e le opportunità un cliente deve decidere se adottare una soluzione di tipo cloud. Alla fine verrà presentato un framework che mira a risolvere un particolare problema, quello del traffico malevolo sulla rete cloud. L’elaborato è strutturato nel modo seguente: nel primo capitolo verrà data una panoramica del cloud computing, evidenziandone caratteristiche, architettura, modelli di servizio, modelli di deployment ed eventuali problemi riguardo il cloud. Nel secondo capitolo verrà data una introduzione alla sicurezza in ambito informatico per poi passare nello specifico alla sicurezza nel modello di cloud computing. Verranno considerate le vulnerabilità derivanti dalle tecnologie e dalle caratteristiche che enucleano il cloud, per poi passare ad una analisi dei rischi. I rischi sono di diversa natura, da quelli prettamente tecnologici a quelli derivanti da questioni legali o amministrative, fino a quelli non specifici al cloud ma che lo riguardano comunque. Per ogni rischio verranno elencati i beni afflitti in caso di attacco e verrà espresso un livello di rischio che va dal basso fino al molto alto. Ogni rischio dovrà essere messo in conto con le opportunità che l’aspetto da cui quel rischio nasce offre. Nell’ultimo capitolo verrà illustrato un framework per la protezione della rete interna del cloud, installando un Intrusion Detection System con pattern recognition e anomaly detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La natura distribuita del Cloud Computing, che comporta un'elevata condivisione delle risorse e una moltitudine di accessi ai sistemi informatici, permette agli intrusi di sfruttare questa tecnologia a scopi malevoli. Per contrastare le intrusioni e gli attacchi ai dati sensibili degli utenti, vengono implementati sistemi di rilevamento delle intrusioni e metodi di difesa in ambiente virtualizzato, allo scopo di garantire una sicurezza globale fondata sia sul concetto di prevenzione, sia su quello di cura: un efficace sistema di sicurezza deve infatti rilevare eventuali intrusioni e pericoli imminenti, fornendo una prima fase difensiva a priori, e, al contempo, evitare fallimenti totali, pur avendo subito danni, e mantenere alta la qualità del servizio, garantendo una seconda fase difensiva, a posteriori. Questa tesi illustra i molteplici metodi di funzionamento degli attacchi distribuiti e dell'hacking malevolo, con particolare riferimento ai pericoli di ultima generazione, e definisce le principali strategie e tecniche atte a garantire sicurezza, protezione e integrità dei dati all'interno di un sistema Cloud.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Correctness of information gathered in production environments is an essential part of quality assurance processes in many industries, this task is often performed by human resources who visually take annotations in various steps of the production flow. Depending on the performed task the correlation between where exactly the information is gathered and what it represents is more than often lost in the process. The lack of labeled data places a great boundary on the application of deep neural networks aimed at object detection tasks, moreover supervised training of deep models requires a great amount of data to be available. Reaching an adequate large collection of labeled images through classic techniques of data annotations is an exhausting and costly task to perform, not always suitable for every scenario. A possible solution is to generate synthetic data that replicates the real one and use it to fine-tune a deep neural network trained on one or more source domains to a different target domain. The purpose of this thesis is to show a real case scenario where the provided data were both in great scarcity and missing the required annotations. Sequentially a possible approach is presented where synthetic data has been generated to address those issues while standing as a training base of deep neural networks for object detection, capable of working on images taken in production-like environments. Lastly, it compares performance on different types of synthetic data and convolutional neural networks used as backbones for the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Un livello di sicurezza che prevede l’autenticazione e autorizzazione di un utente e che permette di tenere traccia di tutte le operazioni effettuate, non esclude una rete dall’essere soggetta a incidenti informatici, che possono derivare da tentativi di accesso agli host tramite innalzamento illecito di privilegi o dai classici programmi malevoli come virus, trojan e worm. Un rimedio per identificare eventuali minacce prevede l’utilizzo di un dispositivo IDS (Intrusion Detection System) con il compito di analizzare il traffico e confrontarlo con una serie d’impronte che fanno riferimento a scenari d’intrusioni conosciute. Anche con elevate capacità di elaborazione dell’hardware, le risorse potrebbero non essere sufficienti a garantire un corretto funzionamento del servizio sull’intero traffico che attraversa una rete. L'obiettivo di questa tesi consiste nella creazione di un’applicazione con lo scopo di eseguire un’analisi preventiva, in modo da alleggerire la mole di dati da sottoporre all’IDS nella fase di scansione vera e propria del traffico. Per fare questo vengono sfruttate le statistiche calcolate su dei dati forniti direttamente dagli apparati di rete, cercando di identificare del traffico che utilizza dei protocolli noti e quindi giudicabile non pericoloso con una buona probabilità.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nel TCR - Termina container Ravenna, è importante che nel momento di scarico del container sul camion non siano presenti persone nell’area. In questo elaborato si descrive la realizzazione e il funzionamento di un sistema di allarme automatico, in grado di rilevare persone ed eventualmente interrompere la procedura di scarico del container. Tale sistema si basa sulla tecnica della object segmentation tramite rimozione dello sfondo, a cui viene affiancata una classificazione e rimozione delle eventuali ombre con un metodo cromatico. Inoltre viene identificata la possibile testa di una persona e avendo a disposizione due telecamere, si mette in atto una visione binoculare per calcolarne l’altezza. Infine, viene presa in considerazione anche la dinamica del sistema, per cui la classificazione di una persona si può basare sulla grandezza, altezza e velocità dell’oggetto individuato.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the last years radar sensor networks for localization and tracking in indoor environment have generated more and more interest, especially for anti-intrusion security systems. These networks often use Ultra Wide Band (UWB) technology, which consists in sending very short (few nanoseconds) impulse signals. This approach guarantees high resolution and accuracy and also other advantages such as low price, low power consumption and narrow-band interference (jamming) robustness. In this thesis the overall data processing (done in MATLAB environment) is discussed, starting from experimental measures from sensor devices, ending with the 2D visualization of targets movements over time and focusing mainly on detection and localization algorithms. Moreover, two different scenarios and both single and multiple target tracking are analyzed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complex networks analysis is a very popular topic in computer science. Unfortunately this networks, extracted from different contexts, are usually very large and the analysis may be very complicated: computation of metrics on these structures could be very complex. Among all metrics we analyse the extraction of subnetworks called communities: they are groups of nodes that probably play the same role within the whole structure. Communities extraction is an interesting operation in many different fields (biology, economics,...). In this work we present a parallel community detection algorithm that can operate on networks with huge number of nodes and edges. After an introduction to graph theory and high performance computing, we will explain our design strategies and our implementation. Then, we will show some performance evaluation made on a distributed memory architectures i.e. the supercomputer IBM-BlueGene/Q "Fermi" at the CINECA supercomputing center, Italy, and we will comment our results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’avanzare delle tecnologie ICT e l’abbattimento dei costi di produzione hanno portato ad un aumento notevole della criminalità informatica. Tuttavia il cambiamento non è stato solamente quantitativo, infatti si può assistere ad un paradigm-shift degli attacchi informatici da completamente opportunistici, ovvero senza un target specifico, ad attacchi mirati aventi come obiettivo una particolare persona, impresa o nazione. Lo scopo della mia tesi è quello di analizzare modelli e tassonomie sia di attacco che di difesa, per poi valutare una effettiva strategia di difesa contro gli attacchi mirati. Il lavoro è stato svolto in un contesto aziendale come parte di un tirocinio. Come incipit, ho effettuato un attacco mirato contro l’azienda in questione per valutare la validità dei sistemi di difesa. L’attacco ha avuto successo, dimostrando l’inefficacia di moderni sistemi di difesa. Analizzando i motivi del fallimento nel rilevare l’attacco, sono giunto a formulare una strategia di difesa contro attacchi mirati sotto forma di servizio piuttosto che di prodotto. La mia proposta è un framework concettuale, chiamato WASTE (Warning Automatic System for Targeted Events) il cui scopo è fornire warnings ad un team di analisti a partire da eventi non sospetti, ed un business process che ho nominato HAZARD (Hacking Approach for Zealot Attack Response and Detection), che modella il servizio completo di difesa contro i targeted attack. Infine ho applicato il processo all’interno dell’azienda per mitigare minacce ed attacchi informatici.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nel mondo della sicurezza informatica, le tecnologie si evolvono per far fronte alle minacce. Non è possibile prescindere dalla prevenzione, ma occorre accettare il fatto che nessuna barriera risulterà impenetrabile e che la rilevazione, unitamente ad una pronta risposta, rappresenta una linea estremamente critica di difesa, ma l’unica veramente attuabile per poter guadagnare più tempo possibile o per limitare i danni. Introdurremo quindi un nuovo modello operativo composto da procedure capaci di affrontare le nuove sfide che il malware costantemente offre e allo stesso tempo di sollevare i comparti IT da attività onerose e sempre più complesse, ottimizzandone il processo di comunicazione e di risposta.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In questa tesi è descritto il lavoro svolto presso un'azienda informatica locale, allo scopo di ricerca ed implementazione di un algoritmo per individuare ed offuscare i volti presenti all'interno di video di e-learning in ambito industriale, al fine di garantire la privacy degli operai presenti. Tale algoritmo sarebbe stato poi da includere in un modulo software da inserire all'interno di un applicazione web già esistente per la gestione di questi video. Si è ricercata una soluzione ad hoc considerando le caratteristiche particolare del problema in questione, studiando le principali tecniche della Computer Vision per comprendere meglio quale strada percorrere. Si è deciso quindi di implementare un algoritmo di Blob Tracking basato sul colore.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inferior alveolar nerve (IAN) lies within the mandibular canal, named inferior alveolar canal in literature. The detection of this nerve is important during maxillofacial surgeries or for creating dental implants. The poor quality of cone-beam computed tomography (CBCT) and computed tomography (CT) scans and/or bone gaps within the mandible increase the difficulty of this task, posing a challenge to human experts who are going to manually detect it and resulting in a time-consuming task.Therefore this thesis investigates two methods to automatically detect the IAN: a non-data driven technique and a deep-learning method. The latter tracks the IAN position at each frame leveraging detections obtained with the deep neural network CenterNet, fined-tuned for our task, and temporal and spatial information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gli Insider Threat sono una problematica complessa e rappresentano una delle problematiche più costose per le organizzazioni: questi ultimi possono, potenzialmente, realizzare grandi guadagni dalle informazioni sottratte danneggiando i clienti e provocando danni irreparabili all’organizzazione. Screening effettuati prima dell’assunzione e la costruzione di un relazione di fiducia basata sulla collaborazione rimangono fondamentali ma, spesso, non sono sufficienti ed è bene integrare il processo di difesa da insider threat all’interno delle business operation. Date queste precondizioni, l’obiettivo di questa tesi è stato quello di cercare un approccio sistematico per affrontare il problema dell’Insider Threat e di fornire nuovi strumenti per la sua detection altamente specializzati nel campo della cyber-security. Dato il campo applicativo, risulta fondamentale rendere questo processo totalmente trasparente al potenziale insider threat. Le più moderne tecniche di hiding, prese dai moderni malware, sono state implementate utilizzando eBPF rendendo possibile unire una quasi totale invisibilità unita alla stabilità garantita da questa tecnologia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Application of dataset fusion techniques to an object detection task, involving the use of deep learning as convolutional neural networks, to manage to create a single RCNN architecture able to inference with good performances on two distinct datasets with different domains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vision systems are powerful tools playing an increasingly important role in modern industry, to detect errors and maintain product standards. With the enlarged availability of affordable industrial cameras, computer vision algorithms have been increasingly applied in industrial manufacturing processes monitoring. Until a few years ago, industrial computer vision applications relied only on ad-hoc algorithms designed for the specific object and acquisition setup being monitored, with a strong focus on co-designing the acquisition and processing pipeline. Deep learning has overcome these limits providing greater flexibility and faster re-configuration. In this work, the process to be inspected consists in vials’ pack formation entering a freeze-dryer, which is a common scenario in pharmaceutical active ingredient packaging lines. To ensure that the machine produces proper packs, a vision system is installed at the entrance of the freeze-dryer to detect eventual anomalies with execution times compatible with the production specifications. Other constraints come from sterility and safety standards required in pharmaceutical manufacturing. This work presents an overview about the production line, with particular focus on the vision system designed, and about all trials conducted to obtain the final performance. Transfer learning, alleviating the requirement for a large number of training data, combined with data augmentation methods, consisting in the generation of synthetic images, were used to effectively increase the performances while reducing the cost of data acquisition and annotation. The proposed vision algorithm is composed by two main subtasks, designed respectively to vials counting and discrepancy detection. The first one was trained on more than 23k vials (about 300 images) and tested on 5k more (about 75 images), whereas 60 training images and 52 testing images were used for the second one.