3 resultados para Intrinsically photosensitive RGCs
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Therapies for the treatment of prostate cancer show several limitations, especially when the cancer metastasizes or acquires resistance to treatment. In addition, most of the therapies currently used entails the occurrence of serious side effects. A different therapeutic approach, more selective and less invasive with respect either to radio or to chemotherapy, is represented by the photodynamic therapy (PDT). The PDT is a treatment that makes use of photosensitive drugs: these agents are pharmacologically inactive until they are irradiated with light at an appropriate wavelength and in the presence of oxygen. The drug, activated by light, forms singlet oxygen, a highly reactive chemical species directly responsible for DNA damage, thus of cell death. In this thesis we present two synthetic strategies for the preparation of two new tri-component derivatives for photodynamic therapy of advanced prostate cancer, namely DRPDT1 and DRPDT2. Both derivatives are formed by three basic elements covalently bounded to each other: a specific ligand with high affinity for the androgen receptor, a suitably chosen spacer molecule and a photoactivated molecule. In particular, DRPDT2 differs from DRPDT1 from the nature of the AR ligand. In fact, in the case of DRPDT2 we used a synthetically engineered androgen receptor ligand able to photo-react even in the absence of oxygen, by delivering NO radical. The presence of this additional pharmacophore, together with the porphyrin, may ensure an additive/synergistic effect to the photo-stimulated therapy, which than may act both in the presence of oxygen and in hypoxic conditions. This approach represents the first example of multimodal photodynamic therapy for prostate cancer.
Resumo:
The subject of this work is the diffusion of turbulence in a non-turbulent flow. Such phenomenon can be found in almost every practical case of turbulent flow: all types of shear flows (wakes, jet, boundary layers) present some boundary between turbulence and the non-turbulent surround; all transients from a laminar flow to turbulence must account for turbulent diffusion; mixing of flows often involve the injection of a turbulent solution in a non-turbulent fluid. The mechanism of what Phillips defined as “the erosion by turbulence of the underlying non-turbulent flow”, is called entrainment. It is usually considered to operate on two scales with different mechanics. The small scale nibbling, which is the entrainment of fluid by viscous diffusion of turbulence, and the large scale engulfment, which entraps large volume of flow to be “digested” subsequently by viscous diffusion. The exact role of each of them in the overall entrainment rate is still not well understood, as it is the interplay between these two mechanics of diffusion. It is anyway accepted that the entrainment rate scales with large properties of the flow, while is not understood how the large scale inertial behavior can affect an intrinsically viscous phenomenon as diffusion of vorticity. In the present work we will address then the problem of turbulent diffusion through pseudo-spectral DNS simulations of the interface between a volume of decaying turbulence and quiescent flow. Such simulations will give us first hand measures of velocity, vorticity and strains fields at the interface; moreover the framework of unforced decaying turbulence will permit to study both spatial and temporal evolution of such fields. The analysis will evidence that for this kind of flows the overall production of enstrophy , i.e. the square of vorticity omega^2 , is dominated near the interface by the local inertial transport of “fresh vorticity” coming from the turbulent flow. Viscous diffusion instead plays a major role in enstrophy production in the outbound of the interface, where the nibbling process is dominant. The data from our simulation seems to confirm the theory of an inertially stirred viscous phenomenon proposed by others authors before and provides new data about the inertial diffusion of turbulence across the interface.
Resumo:
We give a brief review of the Functional Renormalization method in quantum field theory, which is intrinsically non perturbative, in terms of both the Polchinski equation for the Wilsonian action and the Wetterich equation for the generator of the proper verteces. For the latter case we show a simple application for a theory with one real scalar field within the LPA and LPA' approximations. For the first case, instead, we give a covariant "Hamiltonian" version of the Polchinski equation which consists in doing a Legendre transform of the flow for the corresponding effective Lagrangian replacing arbitrary high order derivative of fields with momenta fields. This approach is suitable for studying new truncations in the derivative expansion. We apply this formulation for a theory with one real scalar field and, as a novel result, derive the flow equations for a theory with N real scalar fields with the O(N) internal symmetry. Within this new approach we analyze numerically the scaling solutions for N=1 in d=3 (critical Ising model), at the leading order in the derivative expansion with an infinite number of couplings, encoded in two functions V(phi) and Z(phi), obtaining an estimate for the quantum anomalous dimension with a 10% accuracy (confronting with Monte Carlo results).