6 resultados para Interpretative structural modeling

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This is a research B for the University of Bologna. The course is the civil engineering LAUREA MAGISTRALE at UNIBO. The main purpose of this research is to promote another way of explaining, analyzing and presenting some civil engineering aspects to the students worldwide by theory, modeling and photos. The basic idea is divided into three steps. The first one is to present and analyze the theoretical parts. So a detailed analysis of the theory combined with theorems, explanations, examples and exercises will cover this step. At the second, a model will make clear all these parts that were discussed in the theory by showing how the structures work or fail. The modeling is able to present the behavior of many elements, in scale which we use in the real structures. After these two steps an interesting exhibition of photos from the real world with comments will give the chance to the engineers to observe all these theoretical and modeling-laboratory staff in many different cases. For example many civil engineers in the world may know about the air pressure on the structures but many of them have never seen the extraordinary behavior of the bridge of Tacoma ‘dancing with the air’. At this point I would like to say that what I have done is not a book, but a research of how this ‘3 step’ presentation or explanation of some mechanical characteristics could be helpful. I know that my research is something different and new and in my opinion is very important because it helps students to go deeper in the science and also gives new ideas and inspirations. This way of teaching can be used at all lessons especially at the technical. Hope that one day all the books will adopt this kind of presentation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Structural Health Monitoring (SHM) is an emerging area of research associated to improvement of maintainability and the safety of aerospace, civil and mechanical infrastructures by means of monitoring and damage detection. Guided wave structural testing method is an approach for health monitoring of plate-like structures using smart material piezoelectric transducers. Among many kinds of transducers, the ones that have beam steering feature can perform more accurate surface interrogation. A frequency steerable acoustic transducer (FSATs) is capable of beam steering by varying the input frequency and consequently can detect and localize damage in structures. Guided wave inspection is typically performed through phased arrays which feature a large number of piezoelectric transducers, complexity and limitations. To overcome the weight penalty, the complex circuity and maintenance concern associated with wiring a large number of transducers, new FSATs are proposed that present inherent directional capabilities when generating and sensing elastic waves. The first generation of Spiral FSAT has two main limitations. First, waves are excited or sensed in one direction and in the opposite one (180 ̊ ambiguity) and second, just a relatively rude approximation of the desired directivity has been attained. Second generation of Spiral FSAT is proposed to overcome the first generation limitations. The importance of simulation tools becomes higher when a new idea is proposed and starts to be developed. The shaped transducer concept, especially the second generation of spiral FSAT is a novel idea in guided waves based of Structural Health Monitoring systems, hence finding a simulation tool is a necessity to develop various design aspects of this innovative transducer. In this work, the numerical simulation of the 1st and 2nd generations of Spiral FSAT has been conducted to prove the directional capability of excited guided waves through a plate-like structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Object of this thesis has been centrifuge modelling of earth reinforced retaining walls with modular blocks facing in order to investigate on the influence of design parameters, such as length and vertical spacing of reinforcement, on the behaviour of the structure. In order to demonstrate, 11 models were tested, each one with different length of reinforcement or spacing. Each model was constructed and then placed in the centrifuge in order to artificially raise gravitational acceleration up to 35 g, reproducing the soil behaviour of a 5 metre high wall. Vertical and horizontal displacements were recorded by means of a special device which enabled tracking of deformations in the structure along its longitudinal cross section, essentially drawing its deformed shape. As expected, results confirmed reinforcement parameters to be the governing factor in the behaviour of earth reinforced structures since increase in length and spacing improved structural stability. However, the influence of the length was found out to be the leading parameter, reducing facial deformations up to five times, and the spacing playing an important role especially in unstable configurations. When failure occurred, failure surface was characterised by the same shape (circular) and depth, regardless of the reinforcement configuration. Furthermore, results confirmed the over-conservatism of codes, since models with reinforcement layers 0.4H long showed almost negligible deformations. Although the experiments performed were consistent and yielded replicable results, further numerical modelling may allow investigation on other issues, such as the influence of the reinforcement stiffness, facing stiffness and varying backfills.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of Tissue Engineering is to develop biological substitutes that will restore lost morphological and functional features of diseased or damaged portions of organs. Recently computer-aided technology has received considerable attention in the area of tissue engineering and the advance of additive manufacture (AM) techniques has significantly improved control over the pore network architecture of tissue engineering scaffolds. To regenerate tissues more efficiently, an ideal scaffold should have appropriate porosity and pore structure. More sophisticated porous configurations with higher architectures of the pore network and scaffolding structures that mimic the intricate architecture and complexity of native organs and tissues are then required. This study adopts a macro-structural shape design approach to the production of open porous materials (Titanium foams), which utilizes spatial periodicity as a simple way to generate the models. From among various pore architectures which have been studied, this work simulated pore structure by triply-periodic minimal surfaces (TPMS) for the construction of tissue engineering scaffolds. TPMS are shown to be a versatile source of biomorphic scaffold design. A set of tissue scaffolds using the TPMS-based unit cell libraries was designed. TPMS-based Titanium foams were meant to be printed three dimensional with the relative predicted geometry, microstructure and consequently mechanical properties. Trough a finite element analysis (FEA) the mechanical properties of the designed scaffolds were determined in compression and analyzed in terms of their porosity and assemblies of unit cells. The purpose of this work was to investigate the mechanical performance of TPMS models trying to understand the best compromise between mechanical and geometrical requirements of the scaffolds. The intention was to predict the structural modulus in open porous materials via structural design of interconnected three-dimensional lattices, hence optimising geometrical properties. With the aid of FEA results, it is expected that the effective mechanical properties for the TPMS-based scaffold units can be used to design optimized scaffolds for tissue engineering applications. Regardless of the influence of fabrication method, it is desirable to calculate scaffold properties so that the effect of these properties on tissue regeneration may be better understood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the biggest challenges that contaminant hydrogeology is facing, is how to adequately address the uncertainty associated with model predictions. Uncertainty arise from multiple sources, such as: interpretative error, calibration accuracy, parameter sensitivity and variability. This critical issue needs to be properly addressed in order to support environmental decision-making processes. In this study, we perform Global Sensitivity Analysis (GSA) on a contaminant transport model for the assessment of hydrocarbon concentration in groundwater. We provide a quantification of the environmental impact and, given the incomplete knowledge of hydrogeological parameters, we evaluate which are the most influential, requiring greater accuracy in the calibration process. Parameters are treated as random variables and a variance-based GSA is performed in a optimized numerical Monte Carlo framework. The Sobol indices are adopted as sensitivity measures and they are computed by employing meta-models to characterize the migration process, while reducing the computational cost of the analysis. The proposed methodology allows us to: extend the number of Monte Carlo iterations, identify the influence of uncertain parameters and lead to considerable saving computational time obtaining an acceptable accuracy.