4 resultados para Interest rate differential
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
This thesis deals with inflation theory, focussing on the model of Jarrow & Yildirim, which is nowadays used when pricing inflation derivatives. After recalling main results about short and forward interest rate models, the dynamics of the main components of the market are derived. Then the most important inflation-indexed derivatives are explained (zero coupon swap, year-on-year, cap and floor), and their pricing proceeding is shown step by step. Calibration is explained and performed with a common method and an heuristic and non standard one. The model is enriched with credit risk, too, which allows to take into account the possibility of bankrupt of the counterparty of a contract. In this context, the general method of pricing is derived, with the introduction of defaultable zero-coupon bonds, and the Monte Carlo method is treated in detailed and used to price a concrete example of contract. Appendixes: A: martingale measures, Girsanov's theorem and the change of numeraire. B: some aspects of the theory of Stochastic Differential Equations; in particular, the solution for linear EDSs, and the Feynman-Kac Theorem, which shows the connection between EDSs and Partial Differential Equations. C: some useful results about normal distribution.
Resumo:
This thesis is focused on the financial model for interest rates called the LIBOR Market Model. In the appendixes, we provide the necessary mathematical theory. In the inner chapters, firstly, we define the main interest rates and financial instruments concerning with the interest rate models, then, we set the LIBOR market model, demonstrate its existence, derive the dynamics of forward LIBOR rates and justify the pricing of caps according to the Black’s formula. Then, we also present the Swap Market Model, which models the forward swap rates instead of the LIBOR ones. Even this model is justified by a theoretical demonstration and the resulting formula to price the swaptions coincides with the Black’s one. However, the two models are not compatible from a theoretical point. Therefore, we derive various analytical approximating formulae to price the swaptions in the LIBOR market model and we explain how to perform a Monte Carlo simulation. Finally, we present the calibration of the LIBOR market model to the markets of both caps and swaptions, together with various examples of application to the historical correlation matrix and the cascade calibration of the forward volatilities to the matrix of implied swaption volatilities provided by the market.
Resumo:
In recent years is becoming increasingly important to handle credit risk. Credit risk is the risk associated with the possibility of bankruptcy. More precisely, if a derivative provides for a payment at cert time T but before that time the counterparty defaults, at maturity the payment cannot be effectively performed, so the owner of the contract loses it entirely or a part of it. It means that the payoff of the derivative, and consequently its price, depends on the underlying of the basic derivative and on the risk of bankruptcy of the counterparty. To value and to hedge credit risk in a consistent way, one needs to develop a quantitative model. We have studied analytical approximation formulas and numerical methods such as Monte Carlo method in order to calculate the price of a bond. We have illustrated how to obtain fast and accurate pricing approximations by expanding the drift and diffusion as a Taylor series and we have compared the second and third order approximation of the Bond and Call price with an accurate Monte Carlo simulation. We have analysed JDCEV model with constant or stochastic interest rate. We have provided numerical examples that illustrate the effectiveness and versatility of our methods. We have used Wolfram Mathematica and Matlab.
Resumo:
We present the market practice for interest rate yield curves construction and pricing interest rate derivatives. Then we give a brief description of the Vasicek and the Hull-White models, with an example of calibration to market data. We generalize the classical Black-Scholes-Merton pricing formulas, considering more general cases such as perfect or partial collateral, derivatives on a dividend paying asset subject to repo funding, and multiple currencies. Finally we derive generic pricing formulae for different combinations of cash flow and collateral currencies, and we apply the results to the pricing of FX swaps and CCS, and we discuss curve bootstrapping.