4 resultados para Intelligent Welding systems
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In recent years, energy modernization has focused on smart engineering advancements. This entails designing complicated software and hardware for variable-voltage digital substations. A digital substation consists of electrical and auxiliary devices, control and monitoring devices, computers, and control software. Intelligent measurement systems use digital instrument transformers and IEC 61850-compliant information exchange protocols in digital substations. Digital instrument transformers used for real-time high-voltage measurements should combine advanced digital, measuring, information, and communication technologies. Digital instrument transformers should be cheap, small, light, and fire- and explosion-safe. These smaller and lighter transformers allow long-distance transmission of an optical signal that gauges direct or alternating current. Cost-prohibitive optical converters are a problem. To improve the tool's accuracy, amorphous alloys are used in the magnetic circuits and compensating feedback. Large-scale voltage converters can be made cheaper by using resistive, capacitive, or hybrid voltage dividers. In known electronic voltage transformers, the voltage divider output is generally on the low-voltage side, facilitating power supply organization. Combining current and voltage transformers reduces equipment size, installation, and maintenance costs. These two gadgets cost less together than individually. To increase commercial power metering accuracy, current and voltage converters should be included into digital instrument transformers so that simultaneous analogue-to-digital samples are obtained. Multichannel ADC microcircuits with synchronous conversion start allow natural parallel sample drawing. Digital instrument transformers are created adaptable to substation operating circumstances and environmental variables, especially ambient temperature. An embedded microprocessor auto-diagnoses and auto-calibrates the proposed digital instrument transformer.
Resumo:
Inter-vehicular communications have been gaining momentum throughout the last years and they now occupy a prominent position among the objectives of car manufacturers. Motorcycle manufacturers want to keep pace with the 4 wheels world in order to make Powered Two-wheelers (PTW) integral part of the future connected mobility. The requirements for implementing inter-vehicular communication systems for motorcycles are the subjects of discussion in this thesis. The first purpose of this thesis is to introduce the reader to the world of vehicle-to-everything (V2X) communications, focusing on the Cooperative Intelligent Transport Systems (C-ITS) and the two main current technologies: ITS-G5, which is based on IEEE 802.11p, and cellular vehicle-to-everything (C-V2X). The evolution of these technologies will be also treated. Afterwards, the core of this work is presented: the analysis of the system architecture, including hardware, security, HMI, and peculiar challenges, for implementing V2X systems in motorcycles.
Resumo:
Urbanization has occasionally been linked to negative consequences. Traffic light system in urban arterial networks plays an essential role to the operation of transport systems. The availability of new Intelligent Transportation System innovations paved the way for connecting vehicles and road infrastructure. GLOSA, or the Green Light Optimal Speed Advisory, is a recent integration of vehicle-to-everything (v2x) technology. This thesis emphasized GLOSA system's potential as a tool for addressing traffic signal optimization. GLOSA serves as an advisory to drivers, informing them of the speed they must maintain to reduce waiting time. The considered study area in this thesis is the Via Aurelio Saffi – Via Emilia Ponente corridor in the Metropolitan City of Bologna which has several signalized intersections. Several simulation runs were performed in SUMOPy software on each peak-hour period (morning and afternoon) using recent actual traffic count data. GLOSA devices were placed on a 300m GLOSA distance. Considering the morning peak-hour, GLOSA outperformed the actuated traffic signal control, which is the baseline scenario, in terms of average waiting time, average speed, average fuel consumption per vehicle and average CO2 emissions. A remarkable 97% reduction on both fuel consumption and CO2 emissions were obtained. The average speed of vehicles running through the simulation was increased as well by 7% and a time saved of 25%. Same results were obtained for the afternoon peak hour with a decrease of 98% on both fuel consumption and CO2 emissions, 20% decrease on average waiting time, and an increase of 2% in average speed. In addition to previously mentioned benefits of GLOSA, a 15% and 13% decrease in time loss were obtained during morning and afternoon peak-hour, respectively. Towards the goal of sustainability, GLOSA shows a promising result of significantly lowering fuel consumption and CO2 emissions per vehicle.