7 resultados para Integration of Programming Techniques
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The objective of this thesis is to investigate which contexts should be used for different kinds of note-taking and to study the evolution of the various types of note-taking. Moreover, the final aim of this thesis is to understand which method is used most commonly during the interpreting process, with a special focus on consecutive and community interpreting in the sector of public service and healthcare. The belief that stands behind this thesis is that the most complete method is Rozan’s, which is also the most theorized and used by interpreters. Through the analysis of the different rules of this practice, the importance of this method is shown. Moreover, the analysis demonstrates how these techniques can assist the interpreters in their jobs. This thesis starts from an overview of what note-taking means in the different settings of interpreting and a short history of note-taking is presented. The section that follows analyzes three different well-known types of note-taking methods outside the interpreting environment, that is: linear, non-linear and shorthand. Subsequent to the comparison, Rozan’s 7 principles are analyzed. To authenticate this thesis and the hypotheses herein, data was collected through a survey that was conducted on a sample of a group of graduated students in Linguistic and Intercultural Mediation at the University of Bologna “Scuola Superiore di Lingue Moderne per Interpreti e Traduttori”.
Resumo:
This dissertation document deals with the development of a project, over a span of more than two years, carried out within the scope of the Arrowhead Framework and which bears my personal contribution in several sections. The final part of the project took place during a visiting period at the university of Luleå. The Arrowhead Project is an European project, belonging to the ARTEMIS association, which aims to foster new technologies and unify the access to them into an unique framework. Such technologies include the Internet of Things phe- nomenon, Smart Houses, Electrical Mobility and renewable energy production. An application is considered compliant with such framework when it respects the Service Oriented Architecture paradigm and it is able to interact with a set of defined components called Arrowhead Core Services. My personal contribution to this project is given by the development of several user-friendly API, published in the project's main repository, and the integration of a legacy system within the Arrowhead Framework. The implementation of this legacy system was initiated by me in 2012 and, after many improvements carried out by several developers in UniBO, it has been again significantly modified this year in order to achieve compatibility. The system consists of a simulation of an urban scenario where a certain amount of electrical vehicles are traveling along their specified routes. The vehicles are con-suming their battery and, thus, need to recharge at the charging stations. The electrical vehicles need to use a reservation mechanism to be able to recharge and avoid waiting lines, due to the long recharge process. The integration with the above mentioned framework consists in the publication of the services that the system provides to the end users through the instantiation of several Arrowhead Service Producers, together with a demo Arrowhead- compliant client application able to consume such services.
Resumo:
Il progresso scientifico e le innovazioni tecnologiche nei campi dell'elettronica, informatica e telecomunicazioni, stanno aprendo la strada a nuove visioni e concetti. L'obiettivo della tesi è quello d'introdurre il modello del Cloud computing per rendere possibile l'attuale visione di Internet of Thing. Nel primo capitolo si introduce Ubiquitous computing come un nuovo modo di vedere i computer, cercando di fare chiarezza sulla sua definizione, la sua nascita e fornendo un breve quadro storico. Nel secondo capitolo viene presentata la visione di Internet of Thing (Internet delle “cose”) che si avvale di concetti e di problematiche in parte già considerate con Ubiquitous computing. Internet of Thing è una visione in cui la rete Internet viene estesa agli oggetti di tutti i giorni. Tracciare la posizione degli oggetti, monitorare pazienti da remoto, rilevare dati ambientali sono solo alcuni esempi. Per realizzare questo tipo di applicazioni le tecnologie wireless sono da considerare necessarie, sebbene questa visione non assuma nessuna specifica tecnologia di comunicazione. Inoltre, anche schede di sviluppo possono agevolare la prototipazione di tali applicazioni. Nel terzo capitolo si presenta Cloud computing come modello di business per utilizzare su richiesta risorse computazionali. Nel capitolo, vengono inizialmente descritte le caratteristiche principali e i vari tipi di modelli di servizio, poi viene argomentato il ruolo che i servizi di Cloud hanno per Internet of Thing. Questo modello permette di accelerare lo sviluppo e la distribuzione di applicazioni di Internet of Thing, mettendo a disposizione capacità di storage e di calcolo per l'elaborazione distribuita dell'enorme quantità di dati prodotta da sensori e dispositivi vari. Infine, nell'ultimo capitolo viene considerato, come esempio pratico, l'integrazione di tecnologie di Cloud computing in una applicazione IoT. Il caso di studio riguarda il monitoraggio remoto dei parametri vitali, considerando Raspberry Pi e la piattaforma e-Health sviluppata da Cooking Hacks per lo sviluppo di un sistema embedded, e utilizzando PubNub come servizio di Cloud per distribuire i dati ottenuti dai sensori. Il caso di studio metterà in evidenza sia i vantaggi sia le eventuali problematiche che possono scaturire utilizzando servizi di Cloud in applicazioni IoT.
Resumo:
An industrial manipulator equipped with an automatic clay extruder is used to realize a machine that can manufacture additively clay objects. The desired geometries are designed by means of a 3D modeling software and then sliced in a sequence of layers with the same thickness of the extruded clay section. The profiles of each layer are transformed in trajectories for the extruder and therefore for the end-effector of the manipulator. The goal of this thesis is to improve the algorithm for the inverse kinematic resolution and the integration of the routine within the development software that controls the machine (Rhino/Grasshopper). The kinematic model is described by homogeneous transformations, adopting the Denavit-Hartenberg standard convention. The function is implemented in C# and it has been preliminarily tested in Matlab. The outcome of this work is a substantial reduction of the computation time relative to the execution of the algorithm, which is halved.
Resumo:
The computer controlled screwdriver is a modern technique to perform automatic screwing/unscrewing operations.The main focus is to study the integration of the computer controlled screwdriver for Robotic manufacturing in the ROS environment.This thesis describes a concept of automatic screwing mechanism composed by universal robots, in which one arm of the robot is for inserting cables and the other is for screwing the cables on the control panel switch gear box. So far this mechanism is carried out by human operators and is a fairly complex one to perform, due to the multiple cables and connections involved. It's for this reason that an automatic cabling and screwing process would be highly preferred within automotive/automation industries. A study is carried out to analyze the difficulties currently faced and a controller based algorithm is developed to replace the manual human efforts using universal robots, thereby allowing robot arms to insert the cables and screw them onto the control panel switch gear box. Experiments were conducted to evaluate the insertion and screwing strategy, which shows the result of inserting and screwing cables on the control panel switch gearbox precisely.
Resumo:
This dissertation is focussed on integration of a Parking assist module ECU inside a Body computer Module. This project is aligned with the development of current electrical architecture into the next generation Lumped electrical architecture.
Resumo:
The paper deals with the integration of ROS, in the proprietary environment of the Marchesini Group company, for the control of industrial robotic systems. The basic tools of this open-source software are deeply studied to model a full proprietary Pick and Place manipulator inside it, and to develop custom ROS nodes to calculate trajectories; speaking of which, the URDF format is the standard to represent robots in ROS and the motion planning framework MoveIt offers user-friendly high-level methods. The communication between ROS and the Marchesini control architecture is established using the OPC UA standard; the tasks computed are transmitted offline to the PLC, supervisor controller of the physical robot, because the performances of the protocol don’t allow any kind of active control by ROS. Once the data are completely stored at the Marchesini side, the industrial PC makes the real robot execute a trajectory computed by MoveIt, so that it replicates the behaviour of the simulated manipulator in Rviz. Multiple experiments are performed to evaluate in detail the potential of ROS in the planning of movements for the company proprietary robots. The project ends with a small study regarding the use of ROS as a simulation platform. First, it is necessary to understand how a robotic application of the company can be reproduced in the Gazebo real world simulator. Then, a ROS node extracts information and examines the simulated robot behaviour, through the subscription to specific topics.