3 resultados para Integrated learning systems
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The aim of this work is to develop a prototype of an e-learning environment that can foster Content and Language Integrated Learning (CLIL) for students enrolled in an aircraft maintenance training program, which allows them to obtain a license valid in all EU member states. Background research is conducted to retrace the evolution of the field of educational technology, analyzing different learning theories – behaviorism, cognitivism, and (socio-)constructivism – and reflecting on how technology and its use in educational contexts has changed over time. Particular attention is given to technologies that have been used and proved effective in Computer Assisted Language Learning (CALL). Based on the background research and on students’ learning objectives, i.e. learning highly specialized contents and aeronautical technical English, a bilingual approach is chosen, three main tools are identified – a hypertextbook, an exercise creation activity, and a discussion forum – and the learning management system Moodle is chosen as delivery medium. The hypertextbook is based on the technical textbook written in English students already use. In order to foster text comprehension, the hypertextbook is enriched by hyperlinks and tooltips. Hyperlinks redirect students to webpages containing additional information both in English and in Italian, while tooltips show Italian equivalents of English technical terms. The exercise creation activity and the discussion forum foster interaction and collaboration among students, according to socio-constructivist principles. In the exercise creation activity, students collaboratively create a workbook, which allow them to deeply analyze and master the contents of the hypertextbook and at the same time create a learning tool that can help them, as well as future students, to enhance learning. In the discussion forum students can discuss their individual issues, content-related, English-related or e-learning environment-related, helping one other and offering instructors suggestions on how to improve both the hypertextbook and the workbook based on their needs.
Resumo:
Deep Learning architectures give brilliant results in a large variety of fields, but a comprehensive theoretical description of their inner functioning is still lacking. In this work, we try to understand the behavior of neural networks by modelling in the frameworks of Thermodynamics and Condensed Matter Physics. We approach neural networks as in a real laboratory and we measure the frequency spectrum and the entropy of the weights of the trained model. The stochasticity of the training occupies a central role in the dynamics of the weights and makes it difficult to assimilate neural networks to simple physical systems. However, the analogy with Thermodynamics and the introduction of a well defined temperature leads us to an interesting result: if we eliminate from a CNN the "hottest" filters, the performance of the model remains the same, whereas, if we eliminate the "coldest" ones, the performance gets drastically worst. This result could be exploited in the realization of a training loop which eliminates the filters that do not contribute to loss reduction. In this way, the computational cost of the training will be lightened and more importantly this would be done by following a physical model. In any case, beside important practical applications, our analysis proves that a new and improved modeling of Deep Learning systems can pave the way to new and more efficient algorithms.
Resumo:
Ontology design and population -core aspects of semantic technologies- re- cently have become fields of great interest due to the increasing need of domain-specific knowledge bases that can boost the use of Semantic Web. For building such knowledge resources, the state of the art tools for ontology design require a lot of human work. Producing meaningful schemas and populating them with domain-specific data is in fact a very difficult and time-consuming task. Even more if the task consists in modelling knowledge at a web scale. The primary aim of this work is to investigate a novel and flexible method- ology for automatically learning ontology from textual data, lightening the human workload required for conceptualizing domain-specific knowledge and populating an extracted schema with real data, speeding up the whole ontology production process. Here computational linguistics plays a fundamental role, from automati- cally identifying facts from natural language and extracting frame of relations among recognized entities, to producing linked data with which extending existing knowledge bases or creating new ones. In the state of the art, automatic ontology learning systems are mainly based on plain-pipelined linguistics classifiers performing tasks such as Named Entity recognition, Entity resolution, Taxonomy and Relation extraction [11]. These approaches present some weaknesses, specially in capturing struc- tures through which the meaning of complex concepts is expressed [24]. Humans, in fact, tend to organize knowledge in well-defined patterns, which include participant entities and meaningful relations linking entities with each other. In literature, these structures have been called Semantic Frames by Fill- 6 Introduction more [20], or more recently as Knowledge Patterns [23]. Some NLP studies has recently shown the possibility of performing more accurate deep parsing with the ability of logically understanding the structure of discourse [7]. In this work, some of these technologies have been investigated and em- ployed to produce accurate ontology schemas. The long-term goal is to collect large amounts of semantically structured information from the web of crowds, through an automated process, in order to identify and investigate the cognitive patterns used by human to organize their knowledge.